Importance and climatic distribution of pathogenic fungi associated with bean root and crown in Lorestan province

A. DEHGHANI1, N. PANJEHKEH2, M. DARVISHNIA3, M. SALARI1 and H. ASADI RAHMANI4

1- Ph.D. student and academic member of Lorestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Khoramabad, Iran ; 2- Associate Professor of Plant Protection Department, University of Zabol, Iran; 3- Associate Professor of Plant Protection Department of Lorestan University, Khoramabad, Iran; 4- Associate Professor of Soil Biology Research Department, National Iranian Soil and Water Research Institute, Research, Education and Extension Organization (AREEO), Karaj, Iran

Abstract

Common bean root rot which is an economically important fungal diseases worldwide. Distribution and relative dominance of the disease was investigated in the farms of the major bean cultivating regions and climate of Lorestan province. The dominant pathogenic fungi were identified based on colony morphology and microscopic characteristics, and then confirmed by molecular technique using β-tubulin and TEF1-a genes. Frequency of fungal isolate and the pathogenicity tests showed that F. solani, with 33.42 % isolation frequency was the most important causal agent of common bean root and crown rot in Lorestan province followed by F. oxysporum, Macrophomina phaseolina and Rhizoctonia solani with 26.55, 15.55 and 7.73 %, respectively. Frequencies of root rot pathogens distributed across bean farms of Selseleh, Boujerd, Azna, Doroud and Aligudarz were 24.57, 18.64, 16.58, 15.20 and 8.25 %, respectively. The frequency of the pathogen isolated from common bean plants at the early growth, flowering and podding stages was 20.70, 26.37 and 52.92 %, respectively. Based on the climate zone parameter, the highest frequency of fungal agents was belonged to semi-humid temperate climate.

Key words: Climatic distribution, Fusarium, Root rot, β-tubulin, TEF1-a

Corresponding author: a_dehghanfarm@yahoo.com
عوامل و عادات: اهمیت نسبی پیش‌گزاری‌های بیماری‌یافته پوریتی و تولید لوبیا در مزارع استان لرستان

مقدمه

لوبیا با سطح زیر کشت جهانی بیش از 27 میلیون هکتار در سال با میزان تولید سالانه 112 میلیون تن دانه از محصولات مهم جهانی است (FAO، بر اساس آمار وزارت جهاد کشاورزی در سال 1395، این گیاه با سطح زیر کشت 10/75 هکتار در ایران از محصولات مهم کشاورزی کشور است. استان لرستان با داشتن شرایط مناسب خاک و اقلیم برای کشت جو بیش از دیگر استان‌های ایران محسوب می‌شود. دوم را به نظر می‌رسد و تولید لوبیا به ترتیب با سه‌چهارم و ۱۶/۷۹ درصدی از کشور، دارای یکی از بیماری‌های اصلی لوبیا است (Ershad, 2010; Lak, 2003).

Pythium و Rhizoctonia solani, Fusarium sp. مختلف از جمله بیماری یاد اجدادی شود (Schwartz et al., 2005، لوبیا در شرایط نامطبوع و تنش محیطی، به‌طور شدیدتری به‌ویژه در مراحل اولیه رشد و کلیه از جای عوامل بیماری گیاهی خارجی (Harveson et al., 2005; Hall, 1996).

لوبیا یکی از بیماری‌های شاخص استان لرستان بوده که در سال زراعی ۱۳۹۵-۱۳۹۶ در سراسر استان و به‌ویژه در مناطق داخلی استان کشت گردیده است. در این مقاله، سعی گرفته شده است که یک مدل به‌وسیله PCR گرایش‌های مختلف جهت شناسایی بیماری‌های گیاهی در استان لرستان در طی سال‌های اخیر به کار گرفته شده است. بر اساس مطالعه موجود روستاییکی (Seidi et al., 2013) این مطالعه با منابع درمانی و PCR معمول جهت تشخیص F. solani و ITS rDNA توسط فناوری‌های مولکولی مشابه با فناوری PCR و روش‌های خودآموز می‌تواند بر تدریف زنده‌ماندن و در مراحل معمولی مورد استفاده قرار گیرد (Saremi and Arif, 2012; Khodagholi et al., 2013).

روش بررسی

نمونه‌برداری، جداسازی و خالص‌سازی نمود

نمونه‌برداری از مناطق عمده کشت لوبیا در استان لرستان شامل شرایط‌های آبی، پیش‌گزاری از بیماری لوبیا و پرورش و درصد که دارای سایه آن‌ودگی بودند، در سال زراعی ۱۳۹۵-۱۳۹۶ انجام شد.
قطعات مجددأ بآب سسترون شسته شد و سپس بی کاغذ خشککن واتمن رطوبت گیری و بر اساس روش‌های ارائه شده، مهیج کشت‌های عمومی سیپزمنی-دکستر-آکار (CMA) و برای موارد مشکوک به شبه فارق‌های اوموست، مهیج کشت اختصاصی، تهیه و در دمای 121 درجه سلسیوس و فشار 15 انسفر به‌مدت 20 دقیقه اکتیل‌جوی شد (Singleton et al., 1993) برای چرک‌هایی از رشد باکتری از اسید عکبیکم 25 درصد به میزان یک میلی لیتر در هر لیتر مهیج کشت پس از خشک شدن حرش آن تا 50 درجه سلسیوس افزوده شده و در تشک‌های پیری ریخته شد. قطعات بافتی در زیر هود سترون در مهیج مرطوبه کشت داده شدند. از چهار قطعه کشت شده از هر بونه، دو قطعه با روش تساوی‌گرفته و دو قطعه با روش توك‌ریسه در مراحل جداسازی و حلال‌سازی مواد و نگهداری در نیمه الافتر 25 درجه سلسیوس قرار گرفت.

به‌عمل آمد و در هر شهرستان با اقلیم مشخص (شکل 1) سه مزرعه با مساحت تقریبی یک هکتاری و فاصله حداقل 10 کیلومتر از یکدیگر انتخاب شد. بر اساس مراحل اصلی رشد، (Van Schooven and Pastor-Corrales, 1987) نمونه برداری در سه مرحله رشد اولیه، گل‌دهی و غلاف دهی که حدوداً هم‌زمان با ماه‌های تیر، مرداد و شهریور بود انجام شد. برای نمونه‌برداری با استفاده از کادر یک مترا مربعی و حركت پیماشی در قطر مزرعه سه بار کادر اندازی و از بونه‌های مشکوک و درای علامت بیماری در هر کادر سه بونه اندازه‌گیری و پس از اندازه‌گیری به آزمایشگاه ریشه‌های آن‌ها زیر جریان مایع آب شستشو داده شد. از هر بونه جهت طمعه 1/5 سانتی‌متری از مرز بافت آندو و سالم ریشه‌های تله و سپس برای سترون کردن سطح بافتی به مدت 2-3 دقیقه در هیپوکراتین سدیم تجاری دو درصد قرار داده شد. برای حذف باقیمانده هیپوکراتین سدیم،
تعین غالب‌ت‌ی نسبی عوامل قارچی

غلابیت نسبی گونه‌های قارچی یک شده به‌صورت درصد هر چه چارچی از کل چارچی‌ها محاسبه گردید. برای محاسبه آماری و مقایسه‌ی نسبی عوامل قارچی، شرست‌نیت هم‌اکنون و مراحل نمونه‌برداری و اقلیم‌ها، جهت تشخیص نرمال بوده داده‌ها از آزمون کل‌پاسی می‌توان استفاده شد. آزمون نرمال، یا نگار درصد توزیع نرمال داده‌ها بو ایناقیل به نرمال کردن داده‌ها باید توجه به چه اولی که داده‌ها و وجود عدد سفارش فاقدان عامل قارچی در نمونه‌ها این نکه یک واحده اضافه (1+X) و سپس برای نرمال کردن داده‌ها از نگارین طبیعی (1 + (log x)) به منظور تحلیل داده‌ها در محیط نرم‌افزار آماری 22 تجزیه واریانس با استفاده از آنالیز یک طرفی به‌صورت آزمایش فاکتوریل در قابل طرح بایه شامل تصادفی و سپس آزمون چندهاوسی دانکن انجام گردید. در تحقیق قارچ بر اساس گیاهی گیاهی ریشه و طوفان آزمون نتیجه استفاده شد.

شناسایی بیمارگرها بر اساس صفات ریخت‌شناسی

شناسایی عوامل قارچی محالف به‌شکل گروه قارچی، با استفاده از کلیدی‌ها و منابع معترف انجام شد. بدین منظور برای شناسایی گونه‌های فیزیولوژی از محیط کشت آب‌آکار-سانتی‌گرم (KCI) و نشان کشیده (SNEH) هم‌اکنون و کاربرد پتانسیم (SNA) و گوساید (CLA), (Leslie and Summerell, 2006; Bergess et al. 2014)

شناسایی گونه‌های فیزیولوژی، قارچ‌های دیگر از کلیدی و منابع معترف استفاده گردید (Singelton et al., 1993; Ershad, 1992 set et al., 1991)

آزمایش بیمارگری چادخا‌ها

با توجه به تعداد زیاد چادخا‌های قارچی بسته‌ای از مزارع استان، فقط گونه‌های عمده قارچی شامل R. solani, M. phaseolina F. oxysporum بیمارگری قرار گرفتند و برای این منظور از گروه قارچی، تعداد 50 چادخا به‌طور تصادفی انتخاب گردید.

برای یک همه‌کار به‌صورت درصد هر چه چارچی از کل چارچی‌ها محاسبه گردید. برای محاسبه آماری و مقایسه‌ی نسبی عوامل قارچی، شرست‌نیت هم‌اکنون و مراحل نمونه‌برداری و اقلیم‌ها، جهت تشخیص نرمال بوده داده‌ها از آزمون کل‌پاسی می‌توان استفاده شد. آزمون نرمال، یا نگار درصد توزیع نرمال داده‌ها بو ایناقیل به نرمال کردن داده‌ها باید توجه به چه اولی که داده‌ها و وجود عدد سفارش فاقدان عامل قارچی در نمونه‌ها این نکه یک واحده اضافه (1+X) و سپس برای نرمال کردن داده‌ها از نگارین طبیعی (1 + (log x)) به منظور تحلیل داده‌ها در محیط نرم‌افزار آماری 22 تجزیه واریانس با استفاده از آنالیز یک طرفی به‌صورت آزمایش فاکتوریل در قابل طرح بایه شامل تصادفی و سپس آزمون چندهاوسی دانکن انجام گردید. در تحقیق قارچ بر اساس گیاهی گیاهی ریشه و طوفان آزمون نتیجه استفاده شد.

شناسایی بیمارگرها بر اساس صفات ریخت‌شناسی

شناسایی عوامل قارچی محالف به‌شکل گروه قارچی، با استفاده از کلیدی‌ها و منابع معترف انجام شد. بدین منظور برای شناسایی گونه‌های فیزیولوژی از محیط کشت آب‌آکار-سانتی‌گرم (KCI) و نشان کشیده (SNEH) هم‌اکنون و کاربرد پتانسیم (SNA) و گوساید (CLA), (Leslie and Summerell, 2006; Bergess et al. 2014)

شناسایی گونه‌های فیزیولوژی، قارچ‌های دیگر از کلیدی و منابع معترف استفاده گردید (Singelton et al., 1993; Ershad, 1992 set et al., 1991)

آزمایش بیمارگری چادخا‌ها

با توجه به تعداد زیاد چادخا‌های قارچی بسته‌ای از مزارع استان، فقط گونه‌های عمده قارچی شامل R. solani, M. phaseolina F. oxysporum بیمارگری قرار گرفتند و برای این منظور از گروه قارچی، تعداد 50 چادخا به‌طور تصادفی انتخاب گردید.

برای یک همه‌کار به‌صورت درصد هر چه چارچی از کل چارچی‌ها محاسبه گردید. برای محاسبه آماری و مقایسه‌ی نسبی عوامل قارچی، شرست‌نیت هم‌اکنون و مراحل نمونه‌برداری و اقلیم‌ها، جهت تشخیص نرمال بوده داده‌ها از آزمون کل‌پاسی می‌توان استفاده شد. آزمون نرمال، یا نگار درصد توزیع نرمال داده‌ها بو ایناقیل به نرمال کردن داده‌ها باید توجه به چه اولی که داده‌ها و وجود عدد سفارش فاقدان عامل قارچی در نمونه‌ها این نکه یک واحده اضافه (1+X) و سپس برای نرمال کردن داده‌ها از نگارین طبیعی (1 + (log x)) به منظور تحلیل داده‌ها در محیط نرم‌افزار آماری 22 تجزیه واریانس با استفاده از آنالیز یک طرفی به‌صورت آزمایش فاکتوریل در قابل طرح بایه شامل تصادفی و سپس آزمون چندهاوسی دانکن انجام گردید. در تحقیق قارچ بر اساس گیاهی گیاهی ریشه و طوفان آزمون نتیجه استفاده شد.

شناسایی بیمارگرها بر اساس صفات ریخت‌شناسی

شناسایی عوامل قارچی محالف به‌شکل گروه قارچی، با استفاده از کلیدی‌ها و منابع معترف انجام شد. بدین منظور برای شناسایی گونه‌های فیزیولوژی از محیط کشت آب‌آکار-سانتی‌گرم (KCI) و نشان کشیده (SNEH) هم‌اکنون و کاربرد پتانسیم (SNA) و گوساید (CLA), (Leslie and Summerell, 2006; Bergess et al. 2014)

شناسایی گونه‌های فیزیولوژی، قارچ‌های دیگر از کلیدی و منابع معترف استفاده گردید (Singelton et al., 1993; Ershad, 1992 set et al., 1991)

آزمایش بیمارگری چادخا‌ها

با توجه به تعداد زیاد چادخا‌های قارچی بسته‌ای از مزارع استان، فقط گونه‌های عمده قارچی شامل R. solani, M. phaseolina F. oxysporum بیمارگری قرار گرفتند و برای این منظور از گروه قارچی، تعداد 50 چادخا به‌طور تصادفی انتخاب گردید.
میزان وقوع بیماری پس از هفته سوم و ظهور گیاهچه‌ها، با بررسی تشخیص بیماری روي ریشه، طوفه و اندامهای هموائی نتیجه داشت. آزمون بیماری زایی با تهیه 20 جدایی از هر یک از گونه‌های عمده ذکر شده در قابل طرح کمال اتصالی با سه نکر انجام شد. با توجه به این که گونه‌های فورازیوم و ماکروفیمیا جهت بیماری زایی وابسته به نش رطوبتی هستند (Bease-Fernandez et al., 2006; Nelson et al., 1983)، در مورد رشدی گیاهان سخت مربوط به نش رطوبتی قرار گرفتند.

شاخص بیماری با استفاده از روش مولکولی DNA استخراج

هم چنین، انجام PCR روش تشخیصی با استفاده از کبیت® PDB کشت شد. میکروب‌های جنگل اولیه شده به مقادیر 10/5 کرم در این استفاده از هزار چندین همان کاملاً پودر. در داخل المکروبیوم 1/5 میلی‌لیتری قرار داده شد. استخراج با (Cetyl Trimethyl Ammonium Bromide) CTAB روش (Doyle, 1987).

واکنش زنجیره ای پلیمراز

جهت تایید شناسایی عامل بیماری‌زا قارچی غالبی

beta-tubulin و TEF-1α (F. oxysporum و Fusarium solani)

آنها تیا توالی شد (O’Donnell et al., 1998) تکثیر نواحی مورد نظر با استفاده از

(Technie, Genius FGEN02TP, USA) C-1000 انجام شد. برای تکثیر

EF1-α در تکثیر مورد EF1افریقایی اختصاصی بالادست

EF1 (5'-ATGGGTAAGGAGGACAAAGAC-3') و EF2 (5'-CGGAGTTACCAATGCTGT-3') و برای تکثیر

BF1-β (5'-B2a

GTTAAATTCTTCACGCTGCTTTC-3') و پایین دست استفاده (5'-ACCCCTAGTGTAGACCTTGGC-3') B2b

(Glass and Donaldson, 1995; O’Donnell et al., 1998) شد میکروب‌های (500 میکرولیتر) شامل بافر PCR مختلط هر واکنش (10 میلی‌مولار تریس-اسید کلریدیک و 50 میلی‌مولار کریدیک)
Rhytisma solani and Macrophomina phaseolina

Zier Boudend.

Rhytisma solani وقبطية البلاكما فاشل F. solani

روي محيط فاشل PDA F. solani

توليد عصبة عصبة فاشل برزو Transport ونوع M. solani R. solani معبر ميكروبيوم (Siaw) فشل. اسبرهة مجموعة

قش F. oxysporum و سبب برزو "False heads" ـ لوحة F. solani (Mart.)

T. phaseolina (Burk) Synd. and Hans.

(.Domsch et al., 1980) طابق دانتها (Donk)

أزماش ميامير برا لجدة F. solani F. oxysporum

أوهوي و بعد أن 10 روز تمقت ترتيبه "False heads" ـ T. phaseolina (Burk) Synd. and Hans.

(.Booth, 1971; Burgess et al., 1994; Leslie & Summerell, 2006)

M. phaseolina

Rhytisma solani

(Yeh) PDA F. solani

M. solani R. solani

F. solani

M. phaseolina

(Burk) Synd. and Hans.

(.Domsch et al., 1980) طابق دانتها (Donk)

أزماش ميامير برا لجدة F. solani F. oxysporum

أوهوي و بعد أن 10 روز تمقت ترتيبه "False heads" ـ T. phaseolina (Burk) Synd. and Hans.

(.Booth, 1971; Burgess et al., 1994; Leslie & Summerell, 2006)

M. phaseolina

Rhytisma solani

(Yeh) PDA F. solani

M. solani R. solani

F. solani

M. phaseolina

(Burk) Synd. and Hans.

(.Domsch et al., 1980) طابق دانتها (Donk)
فوزارومیوم و ماکروفورمین این به ندرت رخ داد. منابع مختلف واکنش‌های فوزارومیوم استوار هم چنین به ترتیب برای بیماری زایی و اهمیت وجود تشخیص بیماری را پیادآوری نشان دادند (Naseri and Saremi et al., 2011; Nelson et al., 1983). بنابراین در دسترسی فوزارومیوم و مکزیسنی نشان داده شد که باعث افزایش میزان کلینیکسیون ریشه‌های بهبود یا عدم جدایی‌یابی و در نتیجه افزایش شدت بیماری‌زایی این جدایی‌یابی‌ها (Mousavi et al., 2015).

گردد (Salagegheh et al., 2014) در خصوص تکرش F. oxysporum Hmamطرور، به سه روش در حفظ از بارخی شرح مناسبه پیامدهای این بیماری‌زایی، که به نظر می‌رسد جمعیت قابل توجهی از این گونه فورمی، خاصیت غیربیماری‌زا و یا اندیفیتی در گیاه داشته باشند (Dhingra et al., 2006 و یا مربوط به تغییراتی زیاد در این گونه قارچی باشد (Werner and Irzykowska, 2007). براساس پژوهش‌های مختلف وقوع بیماری‌هایی از فوزارومیوم نیز به واسطه عوامل گواناکون، اکولوژیکی و فیزیولوژیکی اسیراف می‌باشد (Guler Guney and Guldur, 2018) و در مناطق کم‌آب جهان باخت (Das et al., 2008). بنابراین در طول دوره بررسی گلخانه‌ای، سه مرتبه مشاهده بیماری‌زایی و نتایج آراشده در شکل ۲ به دست آمده.

Fig. 2: Disease incidence caused by fungal isolates on common bean. Means error showed by standard error.

شکل ۲: بروز بیماری توسط جدایی‌های فورمی مختلف روی گیاه زراعی لوبیا. خطای میانگین‌ها نشان داده شده است.

تعمین‌های اولیه نسبی عوامل فازی: در مجموع، گونه‌های عمده فازی به‌دست آمده

<table>
<thead>
<tr>
<th>F. oxysporum</th>
<th>F. solani</th>
<th>M. phaseolina</th>
<th>R. solani</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

در تمامی این گونه‌ها توانایی سنتز خصوصیت‌های بیماری‌زایی و بیماری‌های مولکولی چه اتفاق نسبی عوامل غالب F. solani بیماری پوستی‌وتره و طوفان لوبیا شامل نشان داد و F. oxysporum که در آزمایشات بیماری‌زایی، برتری نشان داده‌ها استفاده از ژن‌های TEF1-α و B-tubulin، بیکار شد (جدول ۱).
Table 1. Molecular identification of dominant Fusarium isolates from common bean based on TEF1-α and β-tubulin. NCBI: National Center for biotechnology information.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>TEF1-α and β-tubulin</th>
<th>Similarity</th>
<th>β-tubulin</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C9</td>
<td>Fusarium solani</td>
<td>99%</td>
<td>Fusarium solani</td>
<td>99%</td>
</tr>
<tr>
<td>13R2</td>
<td>100%</td>
<td>Fusarium solani</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>14R12</td>
<td>99%</td>
<td>Fusarium solani</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>23R5</td>
<td>100%</td>
<td>Fusarium oxysporum</td>
<td>99%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Analysis of variance of fungal isolates from growth stages in common bean farms of Lorestan province counties.

<table>
<thead>
<tr>
<th>Factor</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungus</td>
<td>3</td>
<td>1831.292</td>
<td>610.431</td>
<td>19.418<sup>**</sup></td>
</tr>
<tr>
<td>County</td>
<td>4</td>
<td>792.5</td>
<td>198.137</td>
<td>6.303<sup>**</sup></td>
</tr>
<tr>
<td>Stage</td>
<td>2</td>
<td>1691.5</td>
<td>845.7</td>
<td>26.904<sup>**</sup></td>
</tr>
<tr>
<td>Part of plant</td>
<td>1</td>
<td>1740.4</td>
<td>1740.4</td>
<td>55.363<sup>**</sup></td>
</tr>
<tr>
<td>Fungus × Count</td>
<td>12</td>
<td>942.2</td>
<td>78.5</td>
<td>2.498<sup>**</sup></td>
</tr>
<tr>
<td>Fungus × Stage</td>
<td>6</td>
<td>749.8</td>
<td>124.98</td>
<td>3.976<sup>**</sup></td>
</tr>
<tr>
<td>County × Stage</td>
<td>8</td>
<td>454.6</td>
<td>56.831</td>
<td>1.808<sup>**</sup></td>
</tr>
<tr>
<td>Fungus × Part of plant</td>
<td>3</td>
<td>932.7</td>
<td>310.919</td>
<td>9.891<sup>**</sup></td>
</tr>
<tr>
<td>County × Part of plant</td>
<td>4</td>
<td>185.5</td>
<td>46.388</td>
<td>1.476<sup>**</sup></td>
</tr>
<tr>
<td>Stage × Part of plant</td>
<td>2</td>
<td>302.1</td>
<td>151.058</td>
<td>4.803<sup>**</sup></td>
</tr>
<tr>
<td>Fungus × County × Stage</td>
<td>24</td>
<td>720.950</td>
<td>30.404<sup>**</sup></td>
<td>0.956<sup>**</sup></td>
</tr>
<tr>
<td>Fungus × Stage × Part of plant</td>
<td>6</td>
<td>185.417</td>
<td>30.903<sup>**</sup></td>
<td>0.983<sup>**</sup></td>
</tr>
<tr>
<td>County × Stage × Part of plant</td>
<td>8</td>
<td>155.55</td>
<td>19.444<sup>**</sup></td>
<td>0.619<sup>**</sup></td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>31.436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* and ** Indicate no significant difference at the 5% and 1% level based on Duncan's mean comparison test.

Fig. 3. Comparison of the average of fungal isolates. The presence of one common letter at least, indicates no significant difference at the 5% level based on Duncan’s mean comparison test. Data is the average of different sampling stages in different countries.

(Debeze de Jensen et al., 2002) نشان می‌دهد این جایی که در پژوهش ادل و همکاران (2015) توصیف شده است. فاصله خودآچاره‌های گیاهی و شناسایی داده شده است. نتایج در طول تحقیق نشان داد که عوامل قارچی به صورت توأم یا به ترتیب جایی‌های طوطی و ریشه در مراحل رشدی سیر افزایشی است.
Fig. 5. Comparison of the fungal isolates mean in different sampling stages of beans including of early growth (V3), flowering (R6-7) and podding (R9) stages. The presence of one common letter at least, indicates no significant difference at the 5% level based on Duncan's mean comparison test.

Fig. 6. Comparison of the fungal isolates in samplified counties. The presence of one common letter at least, indicates no significant difference at the 5% level based on Duncan's mean comparison test.

Fig. 7. Comparison of the fungal isolates mean in different sampling stages of beans.
بنیاده‌های متعدد و با خود کمک که می‌تواند از این فرآیند رفع شود.

Fusarium chlamidosporum Phytophthora sp. Pythium sp.
Rhizopus sp. F. roseum F. accommodatum F. equisetii
F. semitectum Sclerotium sp. F. javanicum F. culmorum
Cheatomium sp. Aspergillus sp. Stemphyllum sp.
Alternaria sp. Bipolaris sp. Penicillium sp. Trichoderma sp.

بودند.

بررسی اکولوژی و اقیمی: بررسی‌های ترتیبی و مدیریت
تولید محصولات کشاورزی بر اساس اطلاعات اقیمی در
باینمدی‌های آزمایشگاهی از خارج عامل زندگی و غیرزندگی مؤثر است
Webster, 1995).

ویژگی‌های اقیمی (Zand, 2016) و موضعیت
Zagris میانه، استانتلون را برای فعالیت معمول تولید لوبیایی
کشور، از مناطق دیگر تولید می‌سازد. این استانتلون بین 45
درجه و 60 درجه به دو دیش و 3 دیش طول شدید از
نصفال امیرزی (2017) و 32 درجه و 27 دیش به 2
دیش درصد عرض شالی است که اصطلاح افراد گرفته و به چهار
نوع اقیمی (1) توزیع می‌شود (Zand, 2016).

بابال غالب
خوای‌های استاتی لومیی (در ناحیه شمالی و غربی شمالی
شرهستان سلماس) تا سیلنی لومی (در ناحیه شرقی شمال آذربایجای
Mohanjer) و غالب به 7/5/7 است (Shoaei et al., 1992).

همیتگی قوی در نوپایان محیط محصولات لوییا و توسهع
بیماری در مناطق گرمسیری (2017) را به علت
حساسیت لوییا به تنظیم زندگی پژوهی در مرحله گل‌دهی
Sabbaghpour, 2014 Shekari et al., 2010)
الکودورز و بخش صدا لوییاکاری دورود در اقیمیت نیمه
خشک سرد، برآورده در اقیمیت نیمه مرطوب سرد و سلسه
در اقیمیت نیمه مرطوب معدل واقع می‌شود.

در ناحیه 9 که مقاومت فعالی و جاده‌های مناطقی مناسب
به هر اقیمیت ملاحظه می‌گردد، اقیمیت نیمه معدل مرطوب
 스스로کلوزورز دارای بیماری و اقیمیت نیمه خشک سرد (الکودورز)
دارای کمترین فراوانی بود. فراوانی جاده‌ای در شهرستان سلماس

F. solani

Paparu et al. (2017, 2016)

Shekari et al. (2010)
Fig. 5. Comparison of the fungal isolates in simplified climatic region. The presence of one common letter at least, indicates no significant difference at the 5% level based on Duncan's mean comparison test.

Fig. 7. Comparison of isolation frequency of the fungal isolated from root and crown of common bean at the growth stages and counties in Lorestan province.
Reference

Sclerotinia stem rot in the northcentral region of the United States. Phytopathology. 94, 102-110.

SHEKARI, F., ESMAEELPOUR, B. and SHEKARI, F.

SINGELTONE, L.L., MIHAIL, J.D. and RUSH, Gh. M.

VAN SCHOOVEN, A. and PASTOR-CORRALES, M.A.

