OOptimizations of industrial culture medium for mass production of the biocontrol agent Trichoderma harzianum K18 and its formulation for controlling of cucumber powdery mildew in greenhouse conditions

Document Type : Pest Management

Authors

1 1- Assistant Professor, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 2- Researcher, Plant Protection Research Department, Golestan Agricultural Research, Education and Extension Center, AREEO, Gorgan, Iran.

10.22092/jaep.2025.367975.1539

Abstract

Using agro-wastes is a good alternative for developing low-cost carriers for formulation of Trichoderma-based bio-products. Different carbon and nitrogen sources (rice bran, wheat bran, barley bran, Pith, Sugarcane pith, yeast extract, soybean extract, and urea) used for biomass production of T. harzianum K18 isolate. Out of 15 different substrates tested, the substrate containing wheat bran and yeast extract was the best substrate for T. harzianum k18 produced a high density of propagules (8.9 × 107 cfu/g) after 21 days. For the T. harzianum K18 formulation, some adjuvants (including glycerol and carboxymethyl cellulose) added to carriers (kaolin and perlite). At the end of six months of storage period, the kaolin-based formulation with 6.51 and 6.07 log/cfu propagules per gram showed the highest viability of T. harzianum k18 in formulations at 4˚ C and 24˚ C, respectively. The best formulations based on T. harzianum K18 viability at formulations selected for greenhouse studies. 24 hours later than plants spraying with the formulations, the plants incubated with the pathogen spores and after five, 10 and 20 days of incubation, the severity of the disease evaluated. The disease severity at treatment with T. harzianum k18 formulation was 45.42 %, less than the control. Finally, it seems there is a possibility of biological control of cucumber powdery mildew using the microbial formulations of T. harzianum K18.

Keywords

Main Subjects


ABOOA AL-JANABIi, A. and K. JAWAD, 2012. Induction of resistance in cucumber plants against powdery mildew disease caused by Podosphaera xanthii using salicylic acid and Trichoderma harzianum, Journal of Babylon University/Pure and Applied Sciences, No. 4: 21. DOI: https:// doi.org/10.21608/zjar.2016.101574
ALFIKYl, A. and L. WEISSKOPF, 2021. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications, Journal of Fungi, No. 7: 61. DOI: https:// doi.org/10.3390/jof7010061
BETTIOLl, W. and M.A.B. MORANDI, 2008. Trichoderma in Brazil, history, research, commercialization and perspectives. p. 235–237. In: “Molecular Tools for Understanding and Improving Biocontrol” (B. Duffy, M. Maurhoffer, C. Keel, C. Gessler, Y. Elad, S. Klewnick, eds.). 10th meeting of the working group “Biological Control of Fungal and Bacterial Plant Pathogens”, Interlaken, Switzerland, 9–12.
CASTRO, M.J., C. OJEDA, and A.F. CIRELLI, 2014. Advances in surfactants for agrochemicals, Environmental chemistry letters, No. 12: 85− 95. DOI:  https:// doi.org/10.1007/s10311-013-0432-4.
DI GENNARO, M., F. DELLA SALAl, F. VINALE, and A. BORZACCHIELLO, 2024. Design of Carboxymethylcellulose/Poloxamer-Based Bioformulation Embedding Trichoderma afroharzianum for Agricultural Applications, Langmuir, No. 40: 12159-12166. DOI: https:// doi.org/10.1021/acs.langmuir.4c01038
DUGASSA, A., T. ALEMUl, and Y. WOLDEHAWARIAT, 2021. In-vitro compatibility assay of indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of faba bean (Vicia faba L.), BMC Microbiology, No. 21: 115. DOI: https:// doi.org/10.1186/s12866-021-02181-7.
ELSHARKAWY, M.M., S. KAMEL, M. NAGWA, M. EL-KHATEEB, 2014. Biological Control of Powdery and Downy Mildews of Cucumber Under Greenhouse Conditions, Egyptian Journal of Pest Control, No. 2:407-414.
HAFEZ, Y.M., A.S. EL-NAGAR, A.A. ELZAAWELY, S. KAMEL, and H. F. MASWADA, 2018. Biological control of Podosphaera xanthii the causal agent of squash powdery mildew disease by upregulation of defense-related enzymes, Egyptian Journal of Biological Pest Control, No. 28, 57. DOI: https:// doi.org/10.1186/s41938-018-0058-8.
INTANA, W., S. KHEAWLENG, and A. SUNPAPAO, 2021. Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum, Journal of Fungi, No. 7: 46.  DOI: doi.org/10.3390/jof7010046.
KAMEL, E. 2015. Fuzzy Decoupling Control of Greenhouse Climate, Engineering. No. 11: 23-29. DOI: https://doi.org/10.1007/s13369-015-1719-5
MARTINEZ, Y., J. RIBERA, W. FRANCIS M.R. SCHWARZE, and K. DE FRANCE, 2023. Applied Microbiology and Biotechnology, No. 107: 5595–5612.
MISHRA , J. and N. ARORA , 2016. Bioformulations for Plant Growth Promotion and Combating Phytopathogens: A Sustainable Approach, In book: Bioformulations: for Sustainable Agriculture, DOI:  https://doi.org/10.1007/978-81-322-2779-3_1
MONFIL, V.O. and S. CASAS-FlORES, 2014. Molecular Mechanisms of Biocontrol in Trichoderma spp. and Their Applications in Agriculture, In: Gupta, M.S.V., Herrera-Estrella, A., Upadhyay, R., Druzhinina, I. and Tuohy, M., Eds., Biotechnology and Biology of Trichoderma, Elservier, Amsterdam, the Neterlands, 429-453. DOI: https:// doi.org/10.1016/B978-0-444-59576-8.00032-1.
MULATU, A., T. ALEMU, N. MEGERSA, and R.R. VETUKURI, 2021. Optimization of Culture Conditions and Production of Bio-Fungicides from Trichoderma Species under Solid-State Fermentation Using Mathematical Modeling, Microorganisms, No. 9: 1675. DOI: https://doi.org/10.3390.
PAN, S. and S. GASG, 2010. Low cost bioformulation of Trichoderma harzianum for biological control of plant disease, Journal of Journal of Mycopathological Research, No. 48: 51-56.
RAMA, S.S., H.V. SINGH. P. SINGH, and J. KAUR, 2001. A comparison of different substrates for the mass production of Trichoderma, Annual Pl Protec Science, No. 6: 248–253.
RANJBAR, Z., M. SALEHI, and N. SAFAIE, 2023. An endophytic Trichoderma-based wettable powder formulation for biocontrol of apple stem cankers, Journal of Phytopathology, No. 172: 132-166. DOI: https:// doi.org/10.1111/jph.13266.
SAJU, K., M. ANANDARAJ, and Y. SARMA, 2002. On farm production of Trichoderma harzianum using organic matter, Indian Phytopathology, No. 55: 277–281.
SACHEDEV, S., A. SINGH, and R.P. SINGH. 2018. Optimization of culture conditions for mass production and bioformulation of Trichoderma using response surface methodology, Biotechnology, No. 8: 360. DOI: https:// doi.org/10.1007/s13205-018-1360-6.
SANGLE, U. and O. BABBAWALE, 2005. Evaluation of substrates for mass multiplication of Trichoderma spp, Indian Journal of Plant Protection, No. 33: 298.
SINGH, A K. A. KUMAR, and P.K. SINGH, 2018. PGPR amelioration in sustainable agriculture. Food security and environmental management, (1st ed. Pp. 284). eBook ISBN: 9780128160190.
SRIRAM, S., K.P. ROOPA, and M.J. SAVITHA, 2011. Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium, Crop Protection, No. 30: 1334–1339. DOI: https:// doi.org/10.1016/j.cropro.2011.06.003.
STEYARET, J.M., R.J. WELD, A. MENDOZA, and A. STEWART, 2010. Microbiology, Reading, England. No. 156: 2887—900.
SUBASH, N., M. MEENAKSHISUNDARM, C. SASIKUMAR, and N. UNNAMALIA, 2014. Mass cultivation of Trichoderma harzianum using agricultural waste as a substrate for the management of damping off disease and growth promoting in chili plants (Capsicum annuum L.), International Journal of Pharmacy and Pharmaceutical Sciences, 5: 188-192.
THANGAVELU, R., P. SUNDARARAJU, S. SATHIAMOORTHY, T. RANGHUCHANDER, R. VELAZHAHAN, S. NAKKEERAN, and A. PALANISWAMI, 2001. Status of Fusarium wilts of banana in India, In: Molina, A.B., N.H. NIKMASDEK, K.W. LIEW, (Eds.), Banana Fusarium Wilt Management: Towards Sustainable Cultivation. INIBAP-ASPNET, Los Banos, Laguna, Philippines, Pp. 58–63.
TEWANI, L. and C. BHANU, 2004. Evaluation of agro-industrial waste for conidia-based inoculum production of biocontrol agent: Trichoderma harzianum, Journal of Scientific and Industrial Research, No. 63: 807–812.
TYŚKIEWICZ, R., N. ARTUR, O. EWA, J. JAROSZUK-ŚCISEŁ. 2022. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Science, No. 24: 2329. DOI: https:// doi.org/ 10.3390/ijms23042329
VERMA, M., S.K. BRAR, R.D. TYAGI, R.Y. SURAMPALLI, and J.R. VALERO, 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control, Biochemistry Engineering Journal, No. 37: 1–20. DOI: https:// doi.org/10.1016/j.bej.2007.05.012
ZHANG, Y., J. XIAO, K. YANG, Y. WANG, Y. TIAN, and Z. LIANG, 2022. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt, PLoS One, No. 10:17. DOI: https:// doi.org/10.1371/journal.pone.0272702
ZHANG, C., W. WANG, M. XUE, Z. LIU, Q. ZHANG, and J. HOU, 2021. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea, Journal of Fungi, No. 7: 685.  DOI: https://doi.org/10.3390/jof7090685
ZOHAR-PEREZ, L., I. CHEMIN, and A. HETC, 2003. Nussinovitch, Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation, Radiation Research, 160: 198–204. DOI:  https://doi.org 10.1667/rr3027