با همکاری انجمن‏‌ بیماری شناسی گیاهی ایران

نوع مقاله : حشره شناسی کشاورزی

نویسندگان

1 محقق/موسسه تحقیقات گیاهپزشکی کشور

2 دانشیار، گروه گیاه پزشکی دانشکده کشاورزی دانشگاه مراغه

3 استاد، بخش تحقیقات حشره شناسی کشاورزی موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

4 دانشیار، بخش تحقیقات حشره شناسی کشاورزی موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

مگس میوه زیتون Bactrocera oleae (Rossi) (Dip.: Tephritidae)، مهم‌ترین و اصلی‌ترین آفتی است که به درختان زیتون (Olea europaea) حمله می‌کند و خسارت‌های اقتصادی هنگفتی به بار می‌آورد. در این مطالعه تأثیر دما بر سرعت رشد مگس زیتون درهفت دمای ثابت، 10، 15، 20، 24، 28، 32و 35 درجه سلسیوس، رطوبت نسبی 60 تا 70 درصد، و دوره نوری(L:D)  8:16 ساعت بررسی شد. 26 مدل غیرخطی برای تعیین روند رشدونمو مگس میوه زیتون در دماهای مختلف بررسی و برای تخمین آستانه‌های دمایی رشدونمو ارزیابی شد. در بین مدل‌های غیرخطی ارزیابی‌شده، لاکتین-2 و بریر-2 برای تمام مراحل نابالغ با در نظر گرفتن معیارهای آماری و معنی‌داری زیستی، بهترین مدل برازش در مشاهدات بودند. بر این اساس مقادیر آستانه پایین دمای (T0) با استفاده از مدل بریر-2 برای دوره تخم، دوره تخم+ لارو، دوره شفیره و دوره کل مراحل نابالغ به ترتیب 001/5- 5، 16/9 -5، 76/9 -19/7، 68/8 -69/7 درجه سلسیوس، آستانه بالای دمای (TU) برای مراحل رشد ذکر شده به ترتیب 42/43 -32، 23/36 -04/32، 42/36 -03/32، 4/34 -03/34 درجه سلسیوس، مقادیر تخمین دمای بهینه (Topt) برای دوره تخم، دوره تخم +لارو، دوره شفیره و دوره کل مراحل نابالغ به‌ترتیب 09/30 -99/27، 04/28 -43/24، 32/30 -82/25، 86/26 -94/25 درجه سلسیوس و در نهایت مقادیر آستانه دمای کشنده (Tl) برای مراحل رشدی ذکر شده با استفاده از مدل لاکتین- 2 به‌ترتیب 8/43 -31/34، 53/39 -44/37، 45 -67/33، 13/40 -93/37 درجه سلسیوس برآورد شد. یافته‌های بررسی حاضر برای پیش‌بینی پویایی جمعیت مگس میوه زیتون مفید بوده و می‌تواند در تکوین استراتژی‌های مدیریت بهینه B. oleae مؤثر باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Use of nonlinear models in determining the temperature thresholds of olive fruit fly Bactrocera oleae (Rossi) in the Tarom sofla region

نویسندگان [English]

  • Ali Mohammadipour 1
  • Gh Gharekhani 2
  • H. Ranjbar Aghdam 3
  • A.K. keyhanian 4

1 Iranian Research Institute of Plant Protection Department of Agricultural Entomology Research

2 Associate Prof, Department of Plant Protection Faculty of Agriculture, University of Maragheh,Maraghe.Iran

3 Professor, Agricultural Entomology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO)

4 Associate Professor, Agricultural Entomology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran

چکیده [English]

Olive fruit fly Bactrocera oleae (Rossi) (Dip.: Tephritidae), is the main and considerable damaging pest on olive trees (Olea europaea, Oleaceae) and causes huge economic losses. In this study, the effect of temperature on developmental rate of the Olive fruit fly was studied at 7 constant temperatures,10, 15, 20, 24, 28, 32, and 35 °C, 60-70% RH, and a photoperiod of (L:D) 16:8h. 26 nonlinear models were evaluated to determine development rate of olive fruit flies at different temperatures and to estimate the thermal developmental thresholds.Among evaluated nonlinear models, Lactin-2 and Briere-2 were the best fitting models for all immature stages considering the statistical criteria and biological significance of the estimations. Accordingly, the lower temperature threshold values (T0) estimated using Briere-2 model for incubation period, egg+ larval period, pupal period and the total period of immature stages, 5- 5.001, 5- 9.16, 7.19- 9.76, and 7.69- 8.68 °C respectively. In addition, the values of the upper temperature threshold (TU) for the mentioned developmental stages estimated 32- 43.42, 32.04- 36.23, 32.03- 36.42, and 34.03- 34.4 °C, respectively. Furthermore, estimated values for the optimal temperature (Topt) for the same mentioned developmental stages were 27.99- 30.09, 24.43- 28.04, 25.82- 30.32, and 25.94- 26.86 °C, respectively. Finally the values of lethal temperature threshold (Tl) for the mentioned developmental stages by using Lactin-2 model estimated as 34.31- 43.8, 37.44- 39.53, 33.67- 45, and 37.93- 40.13°C, respectively. The findings of the present study are useful for predicting the population dynamics of olive fruit flies and can be effective in developing optimal management strategies of B. oleae.

کلیدواژه‌ها [English]

  • Bactrocera oleae
  • developmental rate
  • nonlinear model
  • temperature
AHMED, A.A., El-DIN, S., El-DIN, E., El-SHAZLY, A., A.F. MARWA. 2007. Contribution to the effect of temperature on some biological aspects of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae) reared on artificial diet. Bulletin of Entomolgical Society of Egypt, No, 84: 121-134.
AliNiazee, M.T. 1976. Thermal unit requirements for determining adult emergence of the western cherry fruit fly in the Willamette Valley of Oregon. Environmental Entomology, No, 5: 397- 402.
Briere, J.F., P. Pracros, A.Y. LeRoux, J.S. Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environmental Entomology. No. 28: 22– 29.
Burnham, K.P., D.R. Anderson, K.P. Huyvaert. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology. No, 65: 23– 35.
CHANG, C.L., C. CACERES, E.B. JANG. 2004. A novel liquid larval diet and its rearing system for melon fly, Bactrocera cucurbitae (Coquillet) (Diptera: Tephritidae). Annals of the Entomological Society of America, No, 97: 524–528.
Choudhary, J.S., S.S. Mali, N. Naaz, L.M. Mukherjee, M.S. Rao, B. P. Bhatt. 2020. Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition. Phytoparasitica. No, 48: 1-13.
Daane, K.M., M.W. Johnson. 2010. Olive Fruit Fly: Managing an Ancient Pest in Modern Times. Annual Review of Entomology. No, 55: 151- 169.
Danjuma, S., N. Thaochan, S. Permkam, C. Satasook. 2014. Effect of temperature on the development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet. Journal of Insect Science. No, 14: 126 – 142.
Ekesi, S., P.W. Nderitu, I. Rwomushana. 2006. Field investigation, life history and demographic parameters of Bactrocera invadens Drews, Tsuruta and White, a new invasive fruit fly species in Africa. Bulletin of Entomological Research. No, 96: 379– 386.
FERNANDES-Da-SILVA, P.G., F.S. ZUCOLOTO. 1993. The influence of host nutritive value on the performance and food selection in Ceratitis capitata (Diptera, Tephritidae). Journal of Insect Physiology. No, 39: 883– 887.
Fletcher, B.S., E. T. Kapatos. 1983. An evaluation of different temperature-development rate models for predicting the phenology of the olive fly Dacus oleae. Fruit flies of economic importance Proceedings of the CEC/IOBC International Symposium, Athens, Greece, 16-19 November 1983, 321- 329, Rotterdam Netherlands: A.A. Balkema
Fletcher, B.S. 1989. Temperature– development rate relationships of the immature stages and adults of tephritid fruit flies. In: Robinson AS, Hooper G (Eds) Fruit flies their biology, natural enemies and control, Vol. 3A. Elsevier, Amsterdam.
FETOH, E.S.A.B., A.A. ABDEL- GAWAD., F.F. SHALABY, M.F. ELYME. 2012. Temperature-dependent development and degree-days models of the peach fruit Fly Bactrocera zonata (Saunders) and the cucurbit Fly Dacus ciliatus (Loew). International Journal of Environmental Sciences and Engineering, No, 3: 85–96.
Genç, H., J. L. Nation. 2008. Survival and development of Bactrocera oleae Gmelin (Diptera: Tephritidae) immature stages at four temperatures in the laboratory. African Journal of Biotechnology. No,7: 2495-2500.
Golizadeh, A., K. Kamali, Y. Fathipour, H. Abbasipour. 2008. Life table and temperature-dependent development of Diadegma anurum (Hymenoptera: Ichneumonidae) on its host Plutella xylostella (Lepidoptera: Plutellidae). Environmental Entomology. No, 37: 38– 44.
Goncalves, F.M., L.M. Torres. 2011. The use of cumulative degree-days to predict olive fly, Bactrocera oleae (Rossi), activity in traditional olive groves from the northeast of Portugal. Journal of Pest science. No, 84: 187- 197.
Honék, A., F. Kocourek. 1990. Temperature and development time in insects: a general relationship between Thermal constants. Zoologische Jahrbücher für Systematik. NO,117: 401– 439.
Karimi-Malati, A., Y. Fathipour, A. A. Talebi. 2014. Development response of Spodoptera exigua to eight constant temperatures: linear and nonlinear modeling. Journal Asia- Pacific Entomology. No, 17: 349-354.
Liu, X., H.Ye. 2009. Effect of temperature on development and survival of Bactrocera correcta (Diptera: Tephritidae). Scientific Research and Essays. No, 4: 467– 472.
Messenger, P.S., N.E. Flitters. 1958. Effect of constant temperature environments on the egg stage of three species of Hawaiian fruit flies. Annals of Entomological Society of America. No, 51: 109- 119.
Mirhosseini, M.A., Y. Fathipour, G.V.P. Reddy. 2017. Arthropod development’s response to temperature: a review and new software for modeling. Annals of Entomological Society of America. No, 110: 507– 520.
Mirhosseini. M.A., Y. Fathipour, M, Soufbaf, G. V. P. Reddy.2018.Thermal Requirements and Development Response to Constant Temperatures by Nesidiocoris tenuis (Hemiptera: Miridae), and Implications for Biological Control. Environmental Entomology. No, XX(X): 1–10.
MOHAMED, A.M. 2000. Effect of constant temperature on the development of the peach fruit fly, Bactrocera zonata (Saunder) (Diptera: Tephritidae). Assuit Journal of Agricultural Sciences, No, 31(2): 329– 337.
MOHAMMADIPOUR, A., G.H. GHAREKHANI, RANJBAR AGHDAM, H, A. K. KEYHANIAN. 2021. Estimation of the lower temperature threshold and thermal requirement of olive fruit fly Bactrocera oleae (Rossi.) (Dip: Tephritidae) using Degree-Day and Ikemoto linear models. Journal of Entomological Society of Iran, No, 41(4): 301- 319.
Neuenschwander, P., S. Mlchelakis, E. Kapatos. 1986. Dacus oleae (Gmel.), pp. 115-159. In: Entomologie oleicole (ARAMBOURG Y., Ed.). Conseil Oleicole International, Madrid, Spain.
Pakyari, H., Y. Fathipour, A. Enkegaard. 2011. Estimating development and temperature thresholds of Scolothrips longicornis (Thysanoptera: Thripidae) on eggs of two-spotted spider mite using linear and nonlinearmodels. Journal of Pest Science. No, 84: 153– 163.
RANJBAR AGHDAM, H., Y. FATHIPOUR, G. Radjabi, M. Rezapanah. 2009a. Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environmental Entomology. No. 38: 885– 895.
Rwomushana, I., S. Ekesi, C.K.P.O. Ogol, I. Gordon. 2008. Effect of temperature on development and survival of immature stages of Bactrocera invadens (Diptera: Tephritidae). Journal of Applied Entomology. No, 132: 832- 839.
Samayoa, A.C., K.S. Choi, Y.S. Wang, S.Y. Hwang, Y.B., Huang, J.J., Ahn, 2018. Thermal effects on the development of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and model validation in Taiwan. Phytoparasitica. No, 46:365– 376.
SHINWARI, I., S. KHAN, M.A. KHAN, S, AHMAD, S.F. SHAH, M.A., MASHWANI, M.A., KHAN, 2015. Evaluation of artificial larval diets for rearing of fruit fly Bactrocera zonata (Diptera: Tephritidae) under laboratory condition. Journal of Entomology and Zoological Studies, No, 3(4): 189-193.
Song, Y., L.B., Coop, M. Omeg, H. Riedl. 2003. Development of a phenology model for predicting western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), emergence in the mid-Columbia area of the western United States. Journal Asia- Pacific Entomology. No, 6: 187- 192.
Tanga, C.M., A. Manrakhan, J.H., Daneel, S.A., Mohamed, K. Fathiya, S. Ekesi. 2015. Comparative analysis of development and survival of two Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae) populations from Kenya and South Africa. Zookeys. No, 26: 467- 487.
Tsiropoulos, G.J., 1972. Storage Temperatures for Eggs and Pupae of the Olive Fruit Fly. Journal of Economic Entomology, No, 65: 100– 102.
Tsitsipis, J.A., 1977. Larval diets for Dacus oleae: the effect of inert material cellulose and agar. Entomologia Experimentalis et Applicata. No, 22: 227-235.
Tsitsipis, J.A., 1980. Effect of constant temperatures on larval and pupal development of olive fruit flies reared on artificial diet. Environmental Entomology. No, 9: 764-68.
Vargas, R.I., W.A., Walsh, E.B., Jang, J.W., Armstrong, D.T., Kanehisa. 1996. Survival and development of immature stages of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of the Entomological Society of America.No, 89: 64- 69.
Younes, M.W.F., Akel, F.A., (2010). Effect of temperature on development and reproduction of Peach Fruit Fly, Bactrocera zonata (Saund.) (Diptera: Tephritidae). Egyptian Journal of Experimental Biology (Zoology). No, 6: 255 - 261.
Zahiri, B., Y. Fathipour, M. Khanjani, S. Moharramipour, M.P., Zalucki. 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): Picking the best model. Environmental Entomology. No, 39: 177– 189.