با همکاری انجمن‏‌ بیماری شناسی گیاهی ایران

نوع مقاله : مدیریت آفات و بیماری‌های گیاهی

نویسندگان

1 استادیار، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 : بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران.

چکیده

بیماری پوسیدگی زغالی ناشی از قارچMacrophomina phaseolina  یکی از رایج‌ترین بیماری‌های سویا در ایران به‌شمار می‌رود. در این پژوهش، مقاومت 35 ژنوتیپ سویا از گروه‌های رسیدگی II تا V در شرایط مزرعه و گلخانه در برابر بیماری پوسیدگی زغالی ارزیابی شد. در شرایط مزرعه، درصد بوته آلوده و درصد ارتفاع تغییر رنگ داخلی ساقه و در شرایط گلخانه طول نکروز ساقه اندازه‌گیری شد. براساس نتایج به‌دست آمده، ژنوتیپ‎ های کتول، سامان، گرگان 3، RVB × Katul و Katul × Krasnodar778 با کمترین درصد بوته‎ آلوده، درصد ارتفاع تغییر رنگ داخلی ساقه و طول نکروز ساقه به‌عنوان ژنوتیپ‎های نسبتاً مقاوم شناخته شدند. ژنوتیپ‎ های ویلیامز، سپیده، سحر، L17 و Karbin× Valenta  با بیشترین درصد بوته‎ آلوده، ارتفاع تغییر رنگ داخلی ساقه و طول نکروز ساقه به‌عنوان ژنوتیپ های حساس ارزیابی شدند. ژنوتیپ‎ های نسبتا̋ مقاوم شناسایی شده می‎توانند به‌عنوان منابع برای توسعه ارقام سویا مقاوم به بیماری پوسیدگی زغالی به‌کار روند.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Resistance evaluation of soybean genotypes to charcoal rot disease in greenhouse and field conditions

نویسندگان [English]

  • Shahriyar Kia 1
  • Ebrahim Hezarjaribi 2

1 Assistant Professor, Crop and Horticulture Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.

2 Crop and Horticulture Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran

چکیده [English]

Charcoal rot caused by the fungus Macrophomina phaseolina is one of the most common soybean diseases in Iran. In this study, resistance of 35 soybean genotypes from maturity groups II to V were evaluated against Charcoal rot in the field and greenhouse conditions. In the field cinditions, the percent of infected plants and the percent height of internal stem discoloration, and in the greenhouse conditions, length of stem necrosis were measured. As the results, genotypes Katul, Saman, Gorgan3, RVB × Katul and Katul × Krasnodar778 have the lowest percent of infected plant, percent height of internal stem discoloration and length of stem necrosis and identified as moderately resistant genotypes. Genotypes Williams, Sepideh, Sahar, L 17, and Karbin × Valenta have the highest percent of infected plant, percent height of internal stem discoloration and length of stem necrosis evaluated as susceptible genotypes. The moderately resistant genotypes identified can be used as the sources for developing soybean cultivars with resistance to charcoal rot.
 

کلیدواژه‌ها [English]

  • Damping off
  • macrophomina
  • resistance
  • soybean
BABU, B. K., A. K. SAXENA, A. K. SRIVASTAVA and D. K. ARORA, 2007. Identification and detection of Macrophomina phaseolina by using specific species oligonucleotide primers and prob. Mycologia, 99: 797-803. DOI: 10.3852/mycologia.99.6.797
BELLALOUI, N., S. R. STETINA, R. B. TURLEY, 2015. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. Frontiers in plant science, 6: 137.   https://doi.org/10.3389/fpls.2015.00137
CHEN, P., G. SHANNON, A. SCABOO, M. CRISEL, S. SMOTHERS, M. CLUBB, S. SELVES, C. C. VIEIRA, M. L. ALI, M. G. MITCHUM, H. NGUYEN, Z. LI, J. BOND, C. MEINHARDT, M. KLEPADLO, S. LI, A. MENGISTU and R. T. ROBINS, 2020. Registration of ‘S14-15146GT’soybean, a high-yielding RR1 cultivar with high oil content and broad disease resistance and adaptation. Journal of Plant Registeration, 14:35–42. DOI: 10.1002/plr2.20018
CHEN, P., G. SHANNON, A. SCABOO, M. CRISEL, S. SMOTHERS, M. CLUBB, S. SELVES, C. C. VIEIRA, M. L. ALI, M. G. MITCHUM, H. NGUYEN, C. MEINHARDT, M. KLEPADLO, Z. LI, J. BOND, S. LI and J. R. SMITH, 2021. Registration of ‘S13-2743C’ as a conventional soybean cultivar with high oil content, broad disease resistance, and high yield potential. Journal of Plant Registeration, 15:306–312. DOI:10.1002/plr2.20081
GHORBANIPOUR, A., B. RABIEI, S.  RAHMANPOUR and A. KHODAPARAST, 2018. Evaluation of resistance of some soybean genotypes to charcoal rot (Macrophomina phaseolina) disease under field conditions. Seed and Plant, 34(1): 143-160. (in Persian). DOI:10.22092/spij.2018.118832
GUPTA, G. K., S. K. SHARMA and R. RAMTEKE, 2012.  Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Phytopathology, 160:167–180.https://doi.org/10.1111/j.1439-0434.2012.01884.x
HEMMATI, P., D. ZAFARI, S. M.  BAGHERI and M. HASHEMI, 2014. Pathogenic variation of Macrophomina phaseolina isolates and resistance of soybean genotypes to the fungus in vitro and greenhouse conditions. Seed and Plant Improvment Journal, 30-1(1): 207-220. (in Persian).
ISHIKAWA, M. S., N. R. RIBEIRO, A. A. DE ALMEIDA and M. I. BALBI-PENA, 2019. Identification of soybean genotypes resistant to charcoal rot by seed inoculation with Macrophomina phaseolina. Journal of Agricultural Science; 11(7): 213-219. https://doi.org/10.5539/jas.v11n7p213
LIN, F., S. S. CHHAPEKAR, C. C.  VIEIRA, M. P. DA SILVA, A.  ROJAS, D.  LEE, N. LIU, E. M. PARDO, Y. LEE, Z.  DONG, J. B.  PINHEIRO, L. D.  PLOPER, J.   RUPE, P.    CHEN, D.  WANG and H. T. NGUYEN, 2022. Breeding for disease resistance in soybean: a global perspective. Theoretical and Applied Genetics, https://doi.org/10.1007/s00122-022-04101-3.
MADDEN, L. V., G. HUGHES and F. VAN DEN BOSCH, 2007. The Study of Plant Disease Epidemics. American Phytopathological Society, St. Paul, MN.
MARQUEZ, N., M. L. GIACHERO, S. DECLEREK and D. A. DUCASSE, 2021. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Front Plant Science, 12:634397. DOI:10.3389/fpls.2021.634397
MENGISTU, A., P. A. ARELLI, J. P. BOND, G. J. SHANNON, A. J.  WRATHER, J. B. RUPE, P. CHEN, C. R. LITTLE, C. H. CANADAY, M. A. NEWMAN and V. R. PANTALONE, 2011b. Evaluation of soybean genotypes for resistance to charcoal rot. Plant Health Progress, 10:1–26. https://doi.org/10.1094/PHP-2010-0926-01-RS
MENGISTU, A., J. Bond, R. NELSON, J. RUPE, G. SHANNON, P. ARELLI and A. WRATHER, 2013. Identification of soybean accessions resistant to Macrophomina phaseolina by field screening and laboratory validation. Plant Health Progress, 14(1):25. https://doi.org/10.1094/PHP-2013-0318-01-RS
MENGISTU, A., J. C. RUPE, and A. J. WRATHER, 2016. Charcoal rot. In: G. L. Hartman, J. C. Rupe, E. J. Sikora, L. L. Domier, K. L. Steffey and J. A. Davis (eds). Compendium of Soybean diseases and pests, 5th edn. American Phytopathological Society, St. Paul, Minnesota, pp 29–31.
MENGISTU, A., J. D. RAY, J. R. SMITH and R. L., PARIS, 2007. Charcoal rot disease assessment of soybean genotypes using a colony-forming unit index. Crop Science,47:2453–2461. https://doi.org/10.2135/.04.0186
MENGISTU, A., J. D. RAY, J. R. SMITH, P. R. ARRLLI, N. BELLALOUI, P. CHEN, G. SHANNON and D. BOYKIN, 2018. Effect of charcoal rot on selected putative drought tolerant soybean genotypes and yield. Crop Prot 105:90–10.  https://doi.org/10.1016/j.cropro.2017.11. 012
MENGISTU, A., J. SMITH, J. D. RAY and N. BELLALOUI, 2011a. Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Disease, 95:1159-1166. Doi: 10.1094/PDIS-02-11-0100
MENGISTU, A., P. R. ARELLI and N.  BELLALOUI, 2021. Resistance to charcoal rot identified within soybean cyst nematode resistant accessions. Plant Health Progress, 22(4) :552–559. https://doi.org/10.1094/PHP-01-21-0004-RS
OROJNIA, S., D. HABIBI, S. SHAHBAZI, F. PAKNEJAD, and M. ILKAEE, 2021. Investigation of biological control of Trichoderma formulations and its mutant type related to chemical treatments in the control of soybean charcoal rots. Romanian Agricultural Research, 38:419–427. D0I 2067-5720 RAR 2021-30
Paris, R. L., Mengistu, A., Tyler, J., and Smith, J. 2006. Registration of soybean germplasm line DT 97–4290 with moderate resistance to charcoal rot. Crop Science. 46:2324-2325. doi:10.2135/cs2005.09.0297
PAWLOWSKI, M. L. C., B. HILL and G. L. HARTMAN, 2015. Resistance to charcoal rot identified in ancestral soybean germplasm. Crop Science, 55:1230–1235. Doi:10.2135/cropsci2014.10.0687
RAYATPANAH, S. and S. V. ALAVI, 2006. Study on soybean charcoal rot disease in Mazandaran. Journal of Agricultural and Natural Resources Sciences, 13: 107-114. (In Persian).
RAYATPANAH, S., A. FOROUTAN, and M. OLADI, 2002. Evaluation of soybean cultivars to charcoal rot caused by (Macrophomina phaseolina) in Mazandaran. Proseeding of 15th Iranian Plant Protection Congress, Razi University of Kermanshah, Kermanshah, Iran, P: 101.
RAYATPANAH, S., M. ALDAGHI, and S. A. DALILI, 2016. Evaluation of tolerance of soybean pure lines to charcoal rot disease. Proseeding of 22th Iranian Plant Protection Congress, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.P: 381.
RAYATPANAH, S., S. V. ALAVI and G. ARAB, 2007. Reaction of some soybean advanced lines to charcoal rot disease, Macrophomina phaseolina (Tassi) Goid. in east Mazandaran. Seed and Plant Improvment Journal, 23(2): 181-186. (in Persian).
REZNIKOV, S., M. A. CHIESA, E. M. PARDO, V. DELISIA, N. BOGARD, V.  GONZALES, F.  LEDESMA, E. N.  MORANDI, D. PLOPER and A. P. CASTAGNARO, 2019. Soybean-Macrophomina phaseolina-specific interactions and identification of a novel source of resistance. Phytopathology, 109:63–73. DOI: 10.1094/PHYTO-08-17-0287-R