با همکاری انجمن‏‌ بیماری شناسی گیاهی ایران

نوع مقاله : حشره شناسی کشاورزی

نویسندگان

1 گروه حشره‌شناسی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 بخش تحقیقات رده‌بندی حشرات، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 دپارتمان علوم طبیعی، بخش حشره‌شناسی، موزه تاریخ طبیعی کارلسروهه، کارلسروهه، آلمان

چکیده

شب‌پره‌های گاما، Autographa gamma و کرم طوقه‌بر، Agrotis segetum از مهم‌ترین آفات کشاورزی در دنیا و ایران به‌‌شمار می‌روند. در این تحقیق با استناد به داده‌های مربوط به حضور این گونه‌ها در ایران و به‌کمک نرم‌افزارهای MaxEnt، R و ArcGIS، مناطق مناسب برای انتشار بالقوۀ آن‌ها پیش‌بینی و عوامل اقلیمی مؤثر مورد مطالعه قرار گرفتند. نتایج نشان داد که استان‌های شمالی برای هر دو گونه مناسب‌ترین شرایط را دارند؛ اما در A. segetum استان بوشهر، بخش‌هایی از استان‌های چهارمحال و بختیاری و کهگیلویه و بویراحمد، و شمال استان فارس نیز مستعد هستند. همچنین، عواملی چون نسبت میانگین دمای روز به محدودۀ دمای سالیانه (bio3)، سرعت متوسط باد در شهریور ماه (wind8) و ضریب تغییرات بارش فصلی (bio15)، بیشترین تأثیر را در انتشار گونه‌ها دارند. در A. gamma، بارش در خشک‌ترین سه ماه (bio17) و در A. segetum، بارش در مرطوب‌ترین سه ماه (bio16)، اهمیت زیادی داشت. همچنین، مشخص شد که ارتفاع نقش زیادی در مدل پراکنش A. segetum دارد. بدیهی است، آگاهی از مناطق مناسب برای حضور این دو آفت و توجه به ترجیح‌های میزبانی آن‌ها، نقش مهمی در ارایۀ برنامه‌های مدیریتی مناسب خواهد داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

IInvestigation of the most important climatic factors affecting distribution of Autographa gamma and Agrotis segetum in Iran

نویسندگان [English]

  • Hossein Falsafi 1
  • Helen Alipanah 2
  • Hadi Ostovan 1
  • Shahram Hesami 1
  • Reza Zahiri 3

1 Department of Entomology, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2 Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO) Tehran, Iran

3 Department of Life Sciences, Entomology Section, State Museum of Natural History Karlsruhe, Karlsruhe, Germany

چکیده [English]

The Silver Y, Autographa gamma and the Turnip moth, Agrotis segetum are considered amongst the most important agricultural pests in the world and Iran. In this paper, the potential distribution of these species in Iran and the important climatic factors affecting their distribution were determined using MaxEnt model, R package and ArcGIS based on their occurrence data. The results showed that, the most suitable areas in both species, are restricted to the northern Provinces; but in A. segetum the Bushehr Province, parts of the Chaharmahal and Bakhtiari and Kohgiluyeh, and Boyerahmad Provinces, and the north of Fars are also suitable. The main environmental variables contributing to their distribution were isothermality (bio2/bio7) (bio3), average wind speed in August (wind8), and precipitation seasonality (coefficient of variation). Moreover, precipitation of the driest quarter (bio17) and precipitation of the wettest quarter (bio16) were dominant climatic factors in Au. gamma and A. segetum, respectively. Additionally, the altitude had a major effect in distribution model of A. segetum. Having knowledge about the suitable areas for these species considering their host preferences will be effective in providing their management programs.
 

کلیدواژه‌ها [English]

  • Distribution
  • climatic factors
  • species distribution models
  • suitable areas
  • Noctuidae
Acevedo, P., Ward, I.A., Real, R., and G.C. Smith. 2010. Assessing biogeographical relationships of ecologically related species using favour ability functions: a case study on British deer. Diversity and Distributions, 16: 515-525. doi.org/10.1111/j.1472-4642.2010.00662.x
Afshar, J. 1936. Les insects nuisibles au cotonnier en Iran, Ministry of Agriculture, Tehran University, 69 pp. (In Persian).
Anonymous. 2021-2022. Agricultural statistics 2021-2022, crops. Vol. 1. Vice President of Statistics, Center for Statistics, Information and Communication Technology. 103 pp. (In Persian).
Aragón, P. and J.M. Lobo. 2012. Predicted effect of climate change on the invasibility and distribution of the Western corn root-worm. Agricultural and Forest Entomology, 14(1): 13-18. doi.org/10.1111/j.1461-9563.2011.00532.x
Azizi, A., Abadi Joo, M.M., and M. Karimi. 2014. The effect of altitudes in the creation of shadow wind deserts (simulation of the effect of Kerman Mountains in the creation of Lut desert). Journal of Geographical Explorations of Desert Areas, 5(31): 145-165. (In Persian).
Behdad, E. 2002. Introductory entomology and important plant pests in Iran. Yadboud Press. 824 pp. (In Persian).
Carneiro, E. 2022. CABI digital library. Autographa gamma (silver-Y moth). CABI Compendium. Available on: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.46179 (Accessed 1 February 2024)
Chapman, J.W., Reynolds, D.R., Mouritsen, H., Hill, J.K., Riley, J.R., Sivell, D., Smith, A.D. and I.P. Woiwod. 2008. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Current Biology, 18(7): 514-518. doi.org/10.1016/j.cub.2008.02.080
Davachi, A. 1949. Major economic pests of agricultural plants in Iran and their control] [Chemical Institute Publication, Tehran]. 294 pp. (In Persian).
De Meyer, M., Robertson, M.P. and M.W. Mansell. 2010. Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera: Tephritidae). Bulletin of Entomological Research, 100(1): 35-48.  doi.org/10.1017/S0007485309006713
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., CarrÉ, G., García MÁrquEz, J.R., Gruber, B., Lafourcade, B., LeitÃo, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., SchrÖder, B., Skidmore, A.K., Zurell, D. and S. Lautenbach. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 6(1): 27-46. doi.org/10.1111/j.1600-0587.2012.07348.x
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. and N.E. Zimmermann. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29: 129-151. doi.org/10.1111/j.2006.0906-7590.04596.x
Elith, J. 2017. Predicting distributions of invasive species. In: Robinson, A.P., Walshe, T., Burgman, M. and Nunn, M. (Eds), Invasive Species: Risk Assessment and Management. Cambridge University Press, Cambridge, pp. 93-129. doi.org/10.1017/9781139019606.006
EPPO. 2023. EPPO global pest database. Agrotis segetum (AGROSE). Available on: https://gd.eppo.int/taxon/ AGROSE/distribution (Accessed 22 December 2023).
Esbjerg, P. 1988. Behaviour of 1st- and 2nd-instar cutworms (Agrotis segetum Schiff.) (Lep., Noctuidae): the influence of soil moisture. Journal of Applied Entomology, 105: 295-302. doi.org/10.1111/j.1439-0418.1988.tb00189.x
Esbjerg, P. 1989. The influence of soil moisture on mortality and damaging effect of 2nd to 6th instar cutworms (Agrotis segetum Schiff., Lep.: Noctuidae). Acta Oecologica, Oecologia Applicata, 10(4): 335-347.
Esbjerg, P. 1990. The significance of shelter for young cutworms (Agrotis segetum). Entomologia Experimentalis et Applicata, 54: 97-100. doi.org/10.1111/j.1570-7458.1990.tb01317.x
Esbjerg, P. and L. Sigsgaard. 2019. Temperature dependent growth and mortality of Agrotis segetum. Insects, 10(7): 1-15. doi.org/10.3390/insects10010007
Esbjerg, P., Nielsen, J.K., Philipsen, P., Zethner, O. and L. Øgaard. 1986. Soil moisture as mortality factor for cutworms, Agrotis segetum Schiff. (Lep., Noctuidae). Journal of Applied Entomology, 102: 277-285. doi.org/10.1111/j.1439-0418.1986.tb00923.x ESRI. 2016. ArcGIS Desktop 10.5. Redlands, CA, USA.
Falsafi, H., Alipanah, H., Ostovan, H., Hesami, SH. and R. Zahiri. 2022. Forecasting the potential distribution of Spodoptera exigua and S. littoralis (Lepidoptera, Noctuidae) in Iran. Journal of Asia-Pacific Entomology, 25(3): 101956. doi.org/10.1016/j.aspen.2022.101956
Fan, S., Chen, C., Zhao, Q., Wei, J. and H. Zhang. 2020. Identifying potentially climatic suitability areas for Arma custos (Hemiptera: Pentatomidae) in China under climate change. Insects, 11, 674. doi.org/10.3390/insects11100674
Fox, K.J. 1973. Trans-oceanic dispersal of insects to New Zealand. New Zealand Entomologist, 5: 240-243. doi.org/10.1080/00779962.1973.9723010
García, A., 2006. Using ecological niche modeling to identify diversity hotspots for the Herpetofauna of Pacific lowlands and ldjacent interior valleys of Mexico. Biological Conservation, 130(1): 25-46. doi.org/10.1016/j.biocon.2005.11.030.
Ghobadian A.A. 1990. Natural landscape of Iranian Plateau. Shahid Bahonar University of Kerman Publication, Kerman, 480 p. (In Persian).
Golmohammadi, G. and K. Mohammadpour. 2020. Management of Erias insulana Bosid. on Cotton. Applied Instruction, Iranian Research Institute of Plant Protection, Tehran, 19 p. (In Persian).
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and R. Moore. 2020. Google Earth engine: planetary-scale geospatial analysis for everyone. Remote sensing of environment. Google.
Guo, J., Fu, X., Wu, X., Zhao, X. and K. Wu. 2015. Annual Migration of Agrotis segetum (Lepidoptera: Noctuidae): Observed on a Small Isolated Island in Northern China. PLoS ONE, 10(6): e0131639. doi.org/10.1371/journal.pone.0131639
Hayat, U., Qin, H., Zhao, J., Akram, M., Shi, J. and Z. Ya. 2021. Variation in the potential distribution of Agrotis ipsilon (Hufnagel) globally and in Pakistan under current and future climatic conditions. Plant Protection Science, 57: 148-158. 10.17221/41/2020-PPS
Hernandez, P.A., Graham, C.H., Master, L.L. and D.L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29: 773-785. doi.org/10.1111/j.0906-7590.2006.04700.x
Hernandez, P.A., Franke, I., Herzog, S.K., Pacheco, V., Paniagua, L., Quintana, H.L., Soto, A., Swenson, J.J., Tovar, C., Valqui, T.H., Vargas, J. and B.E. Young. 2008. Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 17: 1353-1366. doi.org/10.1007/s10531-007-9314-z
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978. doi.org/10.1002/joc.1276
Jabran, K., Florentine, S. and S. Chauhan. 2020. Impacts of climate change on weeds, insect pests, plant diseases and crop yields: Synthesis. In: Crop protection under changing climate. Cham. Springer p. 189-195. doi.org/10.1007/978-3-030-46111-9_8
Kaaber, S. and S. Andreassen. 1999. Notes on two migrant moths from the Faroe Islands, Agrotis segetum (L.) and Noctua orbona (Hfn.) (Lepidoptera: Noctuidae). Frodskaparrit, 47: 159-168. doi.org/10.18602/fsj.v47i.745
Kadmon, R., Farber, O. and A. Danin. 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic Models. Ecological Applications, 14: 401-413. doi.org/10.1890/02-5364
Khanjani, M. 2013. Field Crop Pests in Iran (Insects & Mites). 6th edition. Bu-Ali Sina University Press, 720 pp. (In Persian).
Kheyri, M. 1966. The most important pest of sugar beet in Iran and their control. Sugar Beet Seed institute Journal. Karaj, Alborz, Iran. 68 pp. (In Persian).
Kurukulasuriya, P. and S. Rosenthal. 2003. Climate change and agriculture: A review of impacts and adaptations. Paper No. 91 in Climate Change Series, Agriculture and Rural Development Department and Environment Department, World Bank, Washington, DC.
Larson, S.R., DeGroote, J.P., Bartholomay, L.C. and R. Sugumaran. 2010. Ecological niche modeling of potential West Nile virus vector mosquito species in Iowa. Journal of Insect Science, 10: 1-17. doi.org/10.1673/031.010.11001
Li, W. and Q. Guo. 2013. How to assess the prediction accuracy of Species presence–absence models without absence data? Ecography, 36(7): 788-799. doi.org/10.1111/j.1600-0587.2013.07585.x
Liu, C., White, M. and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4): 778-789. doi.org/10.1111/jbi.12058
Maceljski, M. and I. Balarin. 1974. Factors influencing the population density of the looper Autographa gamma L. in Yugoslavia. Acta Entomologica Jugoslavica, 10(1∕2): 63-76.
Mesgaran, M., Madani, K., Hashemi, H. and P. Azadi. 2016. Evaluation of land and precipitation for agriculture in Iran, working paper 2, stanford Iran 2040 project. Stanford University https:// purl.stanford.edu/vf990qz0340
Moir, M., Szito, A., Botha, J.H. and M. Grimm. 2007. Turnip moth, Agrotis segetum Denis & Schiffermüller 1775 (Lepidoptera: Noctuidae) Pest Datasheet/Pest Risk review for the Grains Industry. Department of Agriculture and Food, Government of Western Australia November, 2007.
Pearson, R.G., Raxworthy, C.J., Nakamura, M. and A.T. Peterson. 2007. Original article: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1): 102-117. doi.org/10.1111/j.1365-2699.2006.01594.x
Peterson, A.T. and J. Soberón. 2012. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza & Conservação, 10(2): 1-6. doi.org/10.4322/natcon.2012.019
Peterson, A.T., Papes, M. and J. Soberón. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1): 63-72. doi.org/10.1016/j.ecolmodel.2007.11.008
Peterson A.T., Soberón J., Pearson R.G., Anderson R.P., Martínez-Meyer E., Nakamura M. and M.B. Araújo. 2011. Monographs in Population Biology (Volume 49) Princeton University Press; Princeton, NJ, USA: Ecological niches and geographic distributions. pp. 101-112. doi.org/10.1515/9781400840670
Phillips, S.J. 2010. A brief tutorial on Maxent. Lessons in Conservation, vol 3. Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History: 108–135.
Phillips, S.J., Anderson, R.P. and R.E Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3): 231-259. doi.org/10.1016/j.ecolmodel.2005.03.026.
Phillips, S.J. and M. Dudík. 2008. Modeling of Species Distributions with MaxEnt: New Extensions and a Comprehensive Evaluation. Ecography, 31: 161-175. doi.org/10.1111/j.0906-7590.2008.5203.x
REGER, N. 2022. Predictive niche modeling for the identification of maize pathogens of greatest concern in the United States. Master of Science (Biology), May, 2022, Sam Houston State University, Huntsville, Texas. 71 pp. Available on: https://hdl.handle.net/20.500.11875/3630 (Accessed 24 February 2024).
Roura-Pascual, N. Brotons, L., Peterson, A.T. and W. Thuiller. 2009. Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Journal of Biological Invasions, 11: 1017-1031. doi.org/10.1007/s10530-008-9313-3
San Bals, G., Obholz, G., Dias, F.M.S., Specht, A., Casagrande, M. M. and O. Mielke. 2022. Global Potential Distribution of the South American Cutworm Pest Agrotis robusta (Lepidoptera: Noctuidae). Neotropical Entomology, 51: 188-198. doi.org/10.1007/s13744-021-00930-x
SCI. 2018-2019. Iran statistic yearbook, 1. Land and climate. Available on: https://www.amar.org.ir/english/Iran-Statistical-Yearbook/Statistical-Yearbook-2018-2019. 88 pp. (Accessed September 2022).
SCI. 2021-2022. Iran statistic yearbook, 1. Land and climate. Available on: https://www.amar.org.ir/english/Iran-Statistical-Yearbook/Statistical-Yearbook-2021-2022. 86 pp. (Accessed September 2022).
Shenasi, H. 1973. Biological research and control of most important pest of fodder plant in Guilan province. Vol 1. Lepidoptera. Sefidroud Agriculture and Animal husbandry institute, Rasht, 74 pp. [in Persian].
Sullivan, M. and T. Molet. 2007. CPHST Pest Datasheet for Autographa gamma. USDA-APHIS-PPQ-CPHST. Revised January 2014.
Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science, 240: 1285-1293.
Wang YS. Xie BY. Wan FH. Xiao QM. and Dai LY. 2007. Potential geographic distribution of Radopholus similis in China. Agricultural Sciences in Chin, 6(12): 1444-1449. doi.org/10.1016/S1671-2927(08)60006-1