با همکاری انجمن‏‌ بیماری شناسی گیاهی ایران

نوع مقاله : بیماری‌شناسی گیاهی

نویسندگان

1 گروه حشره ‎شناسی و بیماری‎های گیاهی، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران

2 گروه حشره‎ شناسی و بیماری‎های گیاهی، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران شرکت راژفدک مهرشهر،

3 پردیس ابوریحان دانشگاه تهران

4 Blvd. Imam Reza

5 کرج پردیس کشاورزی و منابع طبیعی دانشگاه تهران گروه گیاه پزشکی

چکیده

قارچ خوراکی دکمه‌ای سفید (Agaricus bisporus) به دلیل داشتن ارزش غذایی بالا و خـواص دارویـی متعـدد، جایگاه ویژه‌ای را در سبد غذایی مردم جهان بـه خـود اختصـاص داده است، از این رو کشت این منبع غذایی مفید در جهان هر روز گسترده‌تر می‌شود. در بررسی عوامل باکتریایی ایجاد‌کننده بیماری لکه‌قهوه‎ای روی قارچ خوراکی در استان البرز از قارچ‌های دارای علائم بیماری و برای جداسازی عوامل باکتریایی بیوکنترل علیه بیماری لکه‌قهوه‎ای از قارچ‎ های سالم نمونه‎برداری شد. از نمونه‎های آلوده 61 جدایه باکتریایی به‎ دست آمد، نتایج نشان داد که 19 جدایه در قارچ خوراکی بیماری‎ زا بودند و روی قارچ خوراکی علائم تغییر رنگ در حاشیه‎ های جانبی و سطح کلاهک، لکه ‎های وسیع، آبکی و فرورفته و لکه ‎های ریز سوزنی شکل و قهوه‎ای روی کلاهک و نکروزه بخش میانی و پایه قارچ خوراکی ایجاد کردند. از قارچ ‎های سالم 9 جدایه باکتری جداسازی شد که روی قارچ خوراکی بیماری‌زا نبودند و چهار جدایه به عنوان جدایه‎ های درون‌زی منتخب به منظور ارزیابی توانایی‎ مکانیسم‎ های بازدارندگی (تولید هورمون اکسین سیدروفور و تولید آنزیم های فیتاز، پروتئاز، لیپاز، لسیتیناز، سلولاز و کیتیناز) بررسی شدند. آزمون‎های بیوشیمیایی و مولکولی برای شناسایی باکتری‎های بیماری‎ زا و درون‌زی انجام شد. بر اساس بررسی ترادف‎های نوکلوئوتیدی ژن16S rRNA باکتری‌های بیمارگر در جنس ‎های بیمارگر Pseudomonas،Chryseobacterium، Ewingella، Brucella وKlebsiella و باکتری‌های غیربیمارگر درون‎زی در گونه‌های Bacillus velezensis، Kocuria rhizophila، Bacillus altitudinis,Bacillus wiedmannii قرار گرفتند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Molecular analysis of the bacterial microflora associated with and endofungal of Agaricus bisprus

نویسندگان [English]

  • Elham Mousavi Jafaripour 1
  • Mozhdeh Doosti 2
  • Reza Sadeghi 3
  • Nargues Falahi Charkhabi 4
  • Masoud Ahmadzadeh 5

1 Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran

2 Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran Research and Development Manager, Razh fadak company, Mehrshahr, Karaj,

3 , Department of Entomology and Plant Pathology, College of Agricultural Technology, Univers, Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Te

4 Blvd. Imam Reza

5 Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran

چکیده [English]

White button mushroom (Agaricus bisporus) has a special place in the food basket worldwide because of its high nutritional value and medicinal properties. To identify bacterial species associated with brown spot disease of edible mushrooms symptomatic samples were collected from Alborz province farms. Moreover, healthy mushrooms were sampled to isolate biocontrol bacterial agents. Sixty-one bacterial isolates were isolated from symptomatic samples among which 19 isolates induced wide, watery and sunken spots on the surface of the cap and necrosis of the middle part and the base of edible mushroom. Nine non-pathogenic isolates were isolated from healthy mushrooms among which four isolated were selected for auxin hormone, siderophore and production of phytase, protease, lipase, lecithinase, cellulase and chitinase enzymes production assays. Biochemical and molecular tests were performed to identify pathogenic and endofungal bacteria. Based on the 16S rDNA sequence analysis isolates were classified into the pathogenic genera including Pseudomonas, Chryseobacterium, Ewingella, Brucella and Klebsiella and endofungal species including Bacillus velezensis, Kocuria rhizophila, Bacillus wiedmannii.
 

کلیدواژه‌ها [English]

  • Brown spot disease
  • edible mushroom
  • Pseudomonas tolaasi
ABOU-ZEID M. A. 2012. Pathogenic variation in isolates of pseudomonas causing the brown blotch of cultivated mushroom, agaricus bisporus. Brazilian Journal of Microbiology. 1137-1146 ISSN 1517-8382.
ABRIOUEL, H., C. M. A. P. FRANZ, N. B. OMAR, and A. GÁLVEZ. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35:201–232. doi: 10.1111/j.1574-6976.2010.00244.x.
AKHLAGHI, M., TARIGHI, S., FARSI, M. & TAHERI, P. 2016. Identification and investigation of some virulence factors of Pseudomonas tolaasii isolated from mushroom in Iran. Iranian Journal of Plant Pathology, 51 (4), 366-412. (In Persian with abstract in English)
ALIKHANI H., SALEH RASTIN N., and BIHAMTA M.R. 2007. An evaluation of auxin hormons and ACC deaminase production ability by Iranian soil rhizobial strains and the effect of superior strains applications on plant growth characteristics. Iranian Journal of Agricultural sciences (Journal of Agriculture), 38 (4): 693-703. (In Persian with abstract in English)
AL-TAWFIQ, J.A. 2006. Brucella Epididymo-orchitis: A consideration in endemic area. International braz j urol, 32, pp.313-315.
ALTSCHUL, S. F., MADDEN, T. L., SCHAEFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W. AND LIPMAN, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein databasesearch programs. Nucleic Acids Research, 25, 3389-3402. doi: 10.1093/nar/25.17.3389
BECKER, K., RUTSCH, F., UEKÖTTER, A., KIPP, F., KÖNIG, J., MARQUARDT, T., PETERS, G. and VON EIFF, C. 2008. Kocuria rhizophila adds to the emerging spectrum of micrococcal species involved in human infections. Journal of Clinical Microbiology, 46 (10), pp.3537-3539. doi: 10.1128/JCM.00823-08.
BLOCH ET AL. 1997. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine (Baltimore)76:30-41. doi: 10.1097/00005792-199701000-00003.
BRAVO, A., LIKITVIVATANAVONG, S., GILL, S.S. and SOBERÓN, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology, 41 (7), pp.423-431. doi: 10.1016/j.ibmb.2011.02.006.
BUDIHARJO, A., H. JEONG, D. WULANDARI, S. LEE, AND C.-M. RYU. 2017. Complete genome sequence of Bacillus altitudinis P-10, a potential bioprotectant against Xanthomonas oryzae pv. oryzae, isolated from rice rhizosphere in Java, Indonesia. Genome Announc. 5: e01388-17. doi: 10.1128/genomeA.01388-17.
CANTORE P. L., LAZZARONI S., CORAIOLA M., DALLA M., CAFARCHIA C., EVIDENTE A. and IACOBELLIS S. 2006. Biological Characterization of White Line–Inducing Principle (WLIP) Produce by Pseudomonas reactans NCPPB1311. Molecular Plant-Microbe. 10.14601/Phytopathol_Mediterr-1731. doi: 10.1094/MPMI-19-1113
CANTORE, P. L. & IACOBELLIS, N. S. 2003. First report of brown discoloration of Agaricus bisporus caused by Pseudomonas agarici in southern Italy. Phytopathologia Mediterranea, 43 (1), 35-38. doi: 10.14601/Phytopathol_Mediterr-1731.
CEUPPENS, S., BOON, N., & UYTTENDAELE, M. 2013. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS microbiology ecology, 84(3), 433-450. doi: 10.1111/1574-6941.12110.
CHEN, L.; HENG, J.; QIN, S.; BIAN, K. A. 2018. comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS ONE, 13, e0198560. doi: 10.1371/journal.pone.0198560.
CHEN, L.; SHI, H.; HENG, J.; WANG, D.; BIAN, K. 2019. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol. Res., 218, 41–48. doi: 10.1016/j.micres.2018.10.002
COLE, A. L. J. and SKELLERUP, M. V. 1986. ultrastructure of the interaction of agaricus Agaricus bisporus and pseudomonas tolaasii. Printed in Great Britain. Trans. Br. my cology. Soc. 87 (2).
CORAIOLA, M., CANTORE, P.L., LAZZARONI, S., EVIDENTE, A., IACOBELLIS, N.S. and DALLA SERRA, M. 2006. WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758 (11), pp.1713-1722. doi: 10.1016/j.bbamem.2006.06.023
FARSI M. and POURIANFAR H. 2011. Cultivation and breeding of the white button mushroom. 2th ed. Iranian Academic Center for Education, Culture and Research, Mashhad. P 15-28. (In Persian with abstract in English)
GALAVIZ-SILVA, L., J. M. IRACHETA-VILLARREAL, and Z. J. MOLINA-GARZA. 2018. Bacillus and Virgibacillus strains isolated from three Mexican coasts antagonize Staphylococcus aureus and Vibrio parahaemolyticus. FEMS Microbiology Letters 365. doi: 10.1093/femsle/fny202.
GODFREY S. A. C., MARSHALL, J. W. and KLENA J. D. 2001. Genetic characterization of Pseudomonas ‘’NZ17’’- a novel pathogen that results in a brown blotch disease of Agaricus bisporus. Journal of Applied Microbiology 91:412-420. doi: 10.1046/j.1365-2672.2001.01398.x.
HAMIDIZADE, M., TAGHAVI, S.M., MOALLEM, M., AEINI, M., FAZLIARAB, A., ABACHI, H., HERSCHLAG, R.A., HOCKETT, K.L., BULL, C.T. and OSDAGHI, E., 2023. Ewingella americana: An Emerging Multifaceted Pathogen of Edible Mushrooms. Phytopathology®, 113 (2), pp.150-159. doi: 10.1094/PHYTO-08-22-0299-R.
HAMIDIZADEH, M., et al. 2020. Bacterial Brown Pit a new disease of adible mashrooms caused by Mycetocola sp. Plant Disease. 140:1445-1454. doi: 10.1094/PDIS-10-19-2176-RE.
HASSAN, S., AMER, S., MITTAL, C. and SHARMA, R. 2012. Ewingella americana: an emerging true pathogen. Case reports in infectious diseases. doi: 10.1155/2012/730720.
HONEY, R.M., GELFAND, M. and MYERS, N.H. 1957. Chronic brucella pyelonephritis with calcification: short review of the literature and report of a case.?????
HOQUE, S. N., J. GRAHAM, M. E. KAUFMANN, and S. TABAQCHALI. 2001. Chryseobacterium (Flavobacterium) meningosepticum outbreak associated with colonization of water taps in a neonatal intensive care unit. Journal of Hospital. Infect.47:188-192.
HUGH, R. and LEIFSON, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gramnegative bacteria. Journal of Bacteriology, 66: 24-26. doi: 10.1128%2Fjb.66.1.24-26.1953
INGLIS, P.W., BURDEN, J.L. and PEBERDY, J.F. 1996. Evidence for the association of the enteric bacterium Ewingella americana with internal stipe necrosis of Agaricus bisporus. Microbiology, 142 (11), pp.3253-3260. doi: 10.4489%2FMYCO.2009.37.1.062
JATON K. 1992. Development of polymerase chain reaction assay for detection of listeria monocytogenese in clinical cerebrospinal fluid samples.
Journal of Clinical Microbiology 30(80): 1931-1936. doi: 10.1128/jcm.30.8.1931-1936.1992.
JIANG, T., FENG, L., ZHENG, X. 2012. Effect of chitosan coating enriched with thyme oil on postharvest quality and shelf life of shiitake mushroom (Lentinus edodes). Journal of Agricultural and Food Chemistry, 60, 188-196. doi: 10.1021/jf202638u. Epub 2011 Dec 15.
Khabaz H., Rahimian H. 2002. Brown blotch disease of cultivated mushroom in Iran. Iranian Journal of Plant Pathology 38:1-10. (In Persian with abstract in English).
Kovács, G., Burghardt, J., Pradella, S., Schumann, P., Stackebrandt, E. and Màrialigeti, K. 1999. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). International Journal of Systematic and Evolutionary Microbiology, 49 (1), pp.167-173. doi: 10.1099/00207713-49-1-167.
KOVACS, N., 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, London, 178: 703. doi: 10.1038/178703a0.
KUMARAVEL, S., S. THANKAPPAN, S. RAGHUPATHI, and S. UTHANDI. 2018. Draft genome sequence of plant growth-promoting and drought-tolerant Bacillus altitudinis FD48, isolated from rice phylloplane. Genome Announc. 6: e00019-18.
doi:10.1128%2FgenomeA.00019-18.
KWON, S.W., KIM, J.S., PARK, I.C., YOON, S.H., PARK, D.H., LIM, C.K. and GO, S.J. 2003. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. International journal of systematic and evolutionary microbiology, 53 (1), pp.21-27. doi: 10.1099/ijs.0.02326-0.
Laemmli, U.K. 1970. “Cleavage of structural proteins during the assembly of the head of bacteriophage T4”. Nature 227:680–685. doi: 10.1038/227680a0.
LAZARTE JN, LOPEZ RP, GHIRINGHELLI PD, BERON CM. 2018. Bacillus wiedmannii biovar thuringiensis: a specialized mosquitocidal pathogen with plasmids from diverse origins. Genome Biol Evol 10:2823–2833. doi: 10.1093/gbe/evy211.
MACLEOD, K., RUMBOLD, K. and PADAYACHEE, K., 2015. A systems approach to uncover the effects of the PGPR Pseudomonas koreensis on the level of drought stress tolerance in Helianthus annuus. Procedia Environmental Sciences, 29, pp.262-263. doi: 10.1016/j.proenv.2015.07.200.
MAMA, Y., LÁTR, A., ROCHA, I., FREITAS, H., VOSÁTKA, M. and OLIVEIRA, R.S. 2019. Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy, 9 (1), p.33. . 
MUNSCH, P. and ALATOSSAVA, T. 2002 Several pseudomonads, associated with cultivated mushrooms Agaricus bisporus or Pleurotus sp., are hemolytic. Microbiol. Res. 157, 1-5. doi: 10.1078/0944-5013-00159.
MUNSCH, P., ALATOSSAVA, T., MARTTINEN, N., MEYER, J.M., CHRISTEN, R. and GARDAN, L. 2002. Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. International Journal of Systematic and Evolutionary 52, 1973-1983. doi: 10.1099/00207713-52-6-1973
NAVARRO, M. J., GEA, F. J. & GONZALEZ, A. J. 2018. Identification, incidence and control of bacterial blotch disease in mushroom crops by management of environmental conditions. Scientia Horticulturae, 229, 10-18.
OSDAGHI E, MARTINS S, RAMOS-SEPULVEDA L, VIEIRA FR, PECCHIA J, BEYER DM, et al. 2019. 100 Years since Tolaas: Bacterial Blotch of Mushrooms in the 21st Century. Plant Disease.;103 (11):2714–32. doi: 10.1094/pdis-03-19-0589-fe
PALLERONI, N. J. 1993. Pseudomonas classification. Antonie van Leeuwenhoek, 64 (3), 231-251. doi: 10.1007/bf00873084
POURBAGHER, R., ABBASPOUR‐FARD, M.H., SOHBATZADEH, F., ROHANI, A. and POURBAGHER, M. 2023. Effect of plasma‐activated water generated by surface DBD on inactivation of pathogens Pseudomonas tolaasii and Lecanicillium fungicola and enhancement of storage quality of button mushroom. Journal of Food Process Engineering, 46 (5), p.e14312.
dio:10.1111/jfpe.14312
RABBEE, M.F., HWANG, B.S. and Baek, K.H. 2023. Bacillus velezensis: A Beneficial Biocontrol Agent or Facultative Phytopathogen for Sustainable Agriculture. Agronomy, 13 (3), p.840. doi: 10.3390/agronomy13030840.
RABBEE, M.F.; ALI, M.S.; CHOI, J.; HWANG, B.S.; JEONG, S.C.; BAEK, K. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24, 1046. doi: 10.3390/molecules24061046
Rademaker, J.L.W. and De Bruijn, F.J. 1997. Characterization and classification of microbes by rep-pcr genomic fingerprinting and computer assisted pattern analysis chapter 10, p. 151-171. In: Caetano-Anollés, G., and Gresshoff P.M.  (Eds.). DNA markers: protocols, applications and overviews. J. Wiley & Sons, inc., USA.
RAINEY P. B., BRODEY, C. L. and JOHNSTONE, K. 1992. Identification of a gene cluster encoding three highmolecular-weight proteins, which is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii. Molecular Microbiology 8:643-652. doi: 10.1111/j.1365-2958.1993.tb01608.x
RIGGS PJ, CHELIUS MK, INIGUEZ AL, KAEPPLER SM, TRIPLETT EW .2001. "Enhanced maize productivity by inoculation with diazotrophic bacteria". Australian Journal of Plant Physiology. 29 (8): 829–836.
RODRIGUES, C., PASSET, V., RAKOTONDRASOA, A. and BRISSE, S., 2018. Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and related phylogroups by MALDI-TOF mass spectrometry. Frontiers in microbiology, 9, p.3000. 10.3389%2Ffmicb.2018.03000
RYAN KJ, RAY CG, EDS. 2004. Sherris Medical Microbiology (4th ed.). McGraw HillISBN 978-0-8385-8529-0.
SARAVOLTAZ L.D, MANZOR O, VANDORVELDE N, PAWLAK J, BELIAN B. 2003. Broad- range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clinical Infectious Diseases; 36: 40-45. doi 10.1086/345438.
SCHAAD, N.W., JOENS, J.B. and CHUN, W. 2001 “Laboratory Guide for Identification of Plant Pathogenic Bacteria”. A.P.S. USA, PP.373.
SIVANESAN, D. 2003. Diversity amony bacterial causing blotch disease on the commercial Mushroom Agaricus bisporus. MSc Thesis. Brook University, Canada.
SUNAR, K., P. DEY, U. CHAKRABORTY, and B. Chakraborty. 2015. Biocontrol efficacy and plant growth promoting activity of Bacillus J. Food Prot., Vol. 84, No. 8 B. altitudinis phylogeny and antilisterial activity 1331altitudinis isolated from Darjeeling hills, India. J. Basic Microbiol. 55:91–104. doi: 10.1002/jobm.201300227.
SUSLOW, T.V., SCHROTH, M.N. and ISAKA, M. 1982. Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72: 917-918. doi: 10.1094/Phyto-72-917.
TAO, F., ZHANG, M., HANGQING, Y., JINCAI, S. 2006. Effect of different storage condition on chemical and physical properties of white mushrooms after vacuum cooling. Journal of Food Engineering |77, 545-549.
TOLASS A. G. 1915. A bacterial disease of cultivated mushrooms. Phytopathology 5: 51-54.