ارزیابی اثر حشره‌کش‌های دلتامترین، فنیتروتیون و ماترین روی کفشدوزک هفت نقطه‌ای Coccinella septempunctata در شرایط آزمایشگاه

نوع مقاله : مدیریت آفات و بیماری‌های گیاهی

نویسنده

عضو هیات علمی موسسه تحقیقات گیاه پزشکی کشور

10.22092/jaep.2025.367517.1532

چکیده

حشره­کش­ها می­توانند اثرات ناخواسته‌ای بر حشرات غیرهدف داشته باشند. در این پژوهش، اثر چند حشره­کش­ بر حشرات کامل و شفیره‌های کفشدوزک هفت ‌نقطه‌ای Coccinella septempunctata بررسی شد. آزمایش در قالب طرح کاملاً تصادفی با یازده تیمار و سه تکرار در شرایط آزمایشگاهی با دمای 2 ± 24 درجه سلسیوس، رطوبت نسبی 60-50 درصد و دوره­ی نوری 8 :16 (تاریکی: روشنایی) انجام شد. تیمارها شامل حشره­کش‌های فنیتروتیون (5/0، 1 و 2 در هزار)، دلتامترین (15/0، 3/0 و 75/0 در هزار)، ماترین (75/0، 1، 5/1 و 2 در هزار) و شاهد (آب­) بودند. غلظت توصیه شده فنیتروتیون، دلتامترین و ماترین برای آفات گندم به‌ترتیب برابر 2، 75/0 و 5/1 در هزار می­باشد. حشرات بالغ در هر سه غلظت دلتامترین و فنیتروتیون تلفات ۱۰۰ درصدی داشتند، اما ماترین تلفاتی ایجاد نکرد. در مورد شفیره‌ها، دلتامترین ۱۰۰ درصد تلفات ایجاد کرد: فنیتروتیون در غلظت‌های ۲، ۱ و 5/0 در هزار به‌ترتیب سبب تلفات ۱۰۰، 2/82 و 50 درصدی شد و ماترین در بالاترین غلظت با ایجاد بیش از ۸۱ درصد تلفات، در گروه نسبتاً زیان‌آور قرار گرفت. این نتایج، بر لزوم اجتناب جدی از کاربرد دلتامترین و فنیتروتیون در زمان اوج جمعیت کفشدوزک هفت نقطه‌ای و همچنین پرهیز از افزایش غلظت مصرفی فنیتروتیون و ماترین تأکید می­نماید.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effects of deltamethrin, fenitrothion and matrine insecticides on seven-spot ladybird Coccinella septempunctata under laboratory conditions

نویسنده [English]

  • Reihaneh Barati
Assistant Professor, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, AREEO, Tehran, Iran
چکیده [English]

Insecticides may inadvertently impact non-target insects. The effects of some insecticides on the pupae and adults of seven-spot ladybird Coccinella septempunctata was evaluated in this study. The experiment was conducted in a completely randomized design with eleven treatments and three replications, under laboratory conditions at a temperature of 24 ± 2°C, relative humidity of 50-60%, and a photoperiod of 16:8 (light: dark). The treatments included the insecticides fenitrothion (0.5, 1, and 2 ml/L), deltamethrin (0.15, 0.3, and 0.7 ml/L), matrine (0.7, 1, 1.5, and 2 ml/L), and a control (water). The recommended field rate of the insecticides for fenitrothion, deltamethrin, and matrine on wheat pests are 2, 0.75, and 1.5 ml/L, respectively. The results showed that, deltamethrin and fenitrothion caused 100% mortality at all concentration, whereas matrine caused no mortality for adults. For pupae, deltamethrin induced 100% mortality; fenitrothion caused mortality rates of 100%, 82.2%, and 50% at concentrations of 2, 1, and 0.5 ml/L, respectively and matrine caused over 81% mortality at the highest concentration, placing it in the moderately harmful group. These results highlight the need to avoid using deltamethrin and fenitrothion during the population peak of C. septempunctata, also to avoid increasing the concentrations of fenitrothion and matrine.

کلیدواژه‌ها [English]

  • Biological control
  • Botanical insecticides
  • pesticides
  • seven-spot ladybird
AFZA, R., A. AFZAL, M.A. RIAZ, M.Z. MAJEED, A. IDREES, Z.A. QADIR, M. AFZAL, B. HASSAN, and J. LI, 2023. Sublethal and transgenerational effects of synthetic insecticides on the biological parameters and functional response of Coccinella septempunctata (Coleoptera: Coccinellidae) under laboratory conditions. Frontiers in Physiology, 14: 1088712. DOI:  https://doi.org/10.3389/fphys.2023.1088712
 ALI, S., C. ZHANG, Z. WANG, X.M. WANG, J.H. WU, A.G. CUTHBERTSON, Z. SHAO, and B.L. QIU, 2017. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Scientific Reports, 7: 46558. doi: https://doi.org/10.1038/srep46558
ANG, S., J. LIANG, W. ZHENG, Z. ZHANG, J. LI, Z. YAN, W.L. WONG, K. ZHANG, M. CHEN, and P. WU, 2023. Novel matrine derivatives as potential larvicidal agents against Aedes albopictus: synthesis, biological evaluation, and mechanistic analysis. Molecules, 28: 3035. DOI: https://doi.org/10.3390/molecules28073035
ATTA, B., M. RIZWAN, A.M. SABIR, M.D. GOGI, M.A. FAROOQ, and A. JAMAL, 2021. Lethal and sublethal effects of clothianidin, imidacloprid and sulfoxaflor on the wheat aphid, Schizaphis graminum (Hemiptera: Aphididae) and its coccinellid predator, Coccinella septempunctata. International Journal of Tropical Insect Science, 41: 345-358. DOI:  https://doi.org/10.1007/s42690-020-00212-w
BALABANIDOU, V., L. GRIGORAKI, and J. VONTAS, 2018. Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 27: .68-74. DOI:  https://doi.org/10.1016/j.cois.2018.03.001
BARATI, R., GH. GOLMOHAMMADI, and R. MANSOURI, 2016. Side effects of some herbal insecticides on Bemisia tabaci and Encarsia formosa. Biocontrol in Plant Protection, 3: 35-45 (in Persian with English summary). DOI: https://dx.doi.org/10.22092/BCPP.2016.103347
BARATI, R., H. BARARI, M. SHARIFI, and V. MAHDAVI, 2023. Evaluating the efficacy of the botanical insecticide, matrine (Rui Agro SL 0.6%) in control of cereal leaf beetle, Oulema melanopus (Col: Chrysomelidae) and assessing the potential side effects on some natural enemies. Final Report. Iranian Research Institute of Plant Protection. 30 pp. (in Persian with English summary). 64891
BEZZAR-BENDJAZIA, R., S. KILANI-MORAKCHI, and N. ARIBI, 2016. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pesticide Biochemistry and Physiology, 133: 85–90. DOI: https://doi.org/10.1016/j.pestbp.2016.02.009
BOZSIK, A. 2006. Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. Pest Management Science, 62: 651-654. DOI; https://doi.org/10.1002/ps.1221
CURA, M.S. and N.S. GENÇER, 2019. Side effects of azadirachtin on some important beneficial insects in laboratoryJournal of Biological and Environmental Sciences, 13: 39-47.
EL-WAKEIL, N.E., N. GAAFAR, and C. VOLKMAR, 2014. Effects of some botanical insecticides on wheat insects and their natural enemies in winter and spring wheat. Acta Advances in Agricultural Sciences, 2: 19-36.
Farhan, M., C. Zhao, S. Akhtar, I. Ahmad, P. Jilong, and S. Zhang, 2024. Assessment of nano-formulated conventional insecticide-treated sugar baits on mosquito control and the effect on non-target aphidophagous Coccinella septempunctata. Insects, 15: 70. DOI: https://doi.org/10.3390/insects15010070
FRITZ, L.L., E.A. HEINRICHS, V. MACHADO, T.F. ANDREIS, M. PANDOLFO, S.M. DE SALLES, J.V.  DE OLIVEIRA, and L.M. FIUZA, 2013. Impact of lambdacyhalothrin on arthropod natural enemy populations in irrigated rice fields in southern Brazil. International Journal of Tropical Insect Science, 33: 178-187. DOI: https://doi.org/10.1017/S1742758413000192
GASTELBONDO-PASTRANA, B., M. SANTORUM, E.L. SCUDELER, F.H. FERNANDES, E.M. ALVIS, L. CHAMS-CHAMS, and D.C. dOS SANTOS, 2025. Azadirachtin-based biopesticide affects fitness and ovarian development of the natural enemy Ceraeochrysa claveri (Neuroptera: Chrysopidae). Plants, 14: 416. DOI: https://doi.org/10.3390/plants14030416
HASSAN, S.A., F. BIGLER, P. BLAISINGER, H. BOGENSCHÜTZ, J. BRUN, P. CHIVERTON, … and A.Q. VAN ZON, 1985. Standard methods to test the side‐effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working Group Pesticides and Beneficial Organisms. Eppo Bulletin, 15: 214-255. DOI: https://doi.org/10.1111/j.1365-2338.1985.tb00224.x.
HODEK, I. 1996. Food relationships, in Ecology of Coccinellidae, ed. by I Hodek and A Honěk. Kluwer, Dordrecht, pp. 143–238.
HODEK, I. and J.P. MICHAUD, 2008. Why is Coccinella septempunctata so successful? European Journal of Entomology, 105: 1-12. DOI: https://doi.org/10.14411/eje.2008.001
HODEK, I., H.F. VAN EMDEN, and A. HONĚK, 2012. Ecology and Behaviour of the Ladybird Beetles (Coccinellidae). Wiley-Blackwell.
IBM Corp (2020). IBM SPSS Statistics for Windows. Ver. 27.0 Armonk, NY.
KANZAKI, SH. and T. TANAKA, 2010. Different responses of a solitary (Meteorus pulchricornis: Braconidae) and a gregarious (Cotesia kariyai: Braconidae) endoparasitoid to four insecticides in the host Pseudaletia separata (Noctuidae: Lepidoptera). Journal of Pesticide Science, 35: 1-9. DOI: https://doi.org/10.1584/JPESTICS.G09-34
KIM, H.G., J.H. JEON, M.K. KIM, and H.S. LEE, 2005. Pharmacological effects of asaronaldehyde isolated from Acorus gramineus rhizome. Food Science and Biotechnology, 14: 685-688.
LI, X., M.A. SCHULER, and M.R. BERENBAUM, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52: 231-253. DOI: https://doi.org/10.1146/annurev.ento.51.110104.151104
LIU, L., ALAM, M.S., K. HIRATA, K. MATSUDA, and Y. OZOE, 2008. Actions of quinolizidine alkaloids on Periplaneta americana nicotinic acetylcholine receptors. Pest Management Science, 64: 1222-1228. DOI: https://doi.org/10.1002/ps.1622
LUO, W.C. and Q.  ZHANG, 2003. The effects of Sophora alopecuroids alkaloids on metabolic esterases of the diamondback moth. Acta Entomologica Sinica, 46:122–125
McDOUGALL, R., K. OVERTON, A. HOFFMAN, S. WARD, and P. UMINA, 2022. The impact of insecticides and miticides on beneficial arthropods in Australian grains. MH, 9: 5.
MISHRA, A. and N. PAUL, 2024. Biological control of aphid by using beetle (Coccinella septempunctata). World Journal of Biology Pharmacy and Health Sciences, 18: 168-172. DOI: https://doi.org/0.30574/wjbphs.2024.18.2.0251
MOHAGHEGH NEISHABOURI, J., H. DAD POUR, Z. MOJIB HAGH GHADAM, M. AMOU OGHLI TABARI, and M. HASANZADEH, 2019. Investigating the effect of tebufenozide (Mimic SC 20%), matrine (SL 0.6%), diazinon G10% and fipronil G0.2% in controlling striped rice stemborer in the field. Final Report. Iranian Research Institute of Plant Protection. 26 pp. (in Persian with English summary). 56233.
MOLLAH, M.I., M. RAHMAN, and Z. ALAM, 2013. Effect of insecticides on lady bird beetle (Coleoptera: Coccinellidae) in country bean field. Middle-East Journal of Scientific Research, 17:1607-1610. DOI: https://doi.org/10.5829/idosi.mejsr.2013.17.11.11212
MORDUE, A.J., E.D. MORGAN, and A.J. NISBET, 2010. Azadirachtin, a natural product in insect control. In: Insect Control (Biological and Synthetic Agents): Gilbert, L.I., Gill, S.S., Eds., Academic Press: San Diego, CA, USA, pp. 118–135.
MUGHAL, T.K., Z. ULLAH, M.A. SABRI, S. AHMAD, and D. HUSSAIN, 2017. In vitro comparative toxicity of different insecticides against adults of seven spotted beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Journal of Entomology and Zoology Studies, 5: 498-502.
NOURBAKHSH S. 2022. List of important pests, diseases and weeds of major agricultural products, chemicals and recommended ways for their control. Plant Protection Organization, Ministry of Agriculture Jihad. Tehran, Iran, 221 pp. (in Persian).
PARSAEYAN, E., M. SABER, S.A. SAFAVI, N. POORJAVAD, and A. BIONDI, 2020. Side effects of chlorantraniliprole, phosalone and spinosad on the egg parasitoid, Trichogramma brassicae. Ecotoxicology, 29: 1052-1061. DOI: https://doi.org/10.1007/s10646-020-02235-y
RASHEED, M.A., M.M. KHAN, M. HAFEEZ, J. ZHAO, Y. ISLAM, S. ALI, S. UR-REHMAN, U. E-HANI, and X. ZHOU, 2020. Lethal and sublethal effects of chlorpyrifos on biological traits and feeding of the aphidophagous predator Harmonia axyridis. Insects, 11: 491. DOI: https://doi.org/10.3390/insects11080491
SALEEM, M., M. SALEEM, D. HUSSAIN, G. GHOUSE, and M. ABBAS, 2019. Predation efficacy of ladybird beetle (Coleoptera: Coccinellidae) against wheat aphid under laboratory conditions. Journal of Entomology and Zoology Studies, 7: 709-712.
SANTOS, K.F.A., O.Z., ZANARDI, M.R. DE MORAIS, C.R.O. JACOB, M.B.  DE OLIVEIRA, and P.T. YAMAMOTO, 2017. The impact of six insecticides commonly used in control of agricultural pests on the generalist predator Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere: 186: .218-226. DOI: https://doi.org/10.1016/j.chemosphere.2017.07.165
SCHMIDT-JEFFRIS, R.A. 2023. Nontarget pesticide impacts on pest natural enemies: Progress and gaps in current knowledge. Current Opinion in Insect Science, 58: 101056. DOI: https://doi.org/10.1016/j.cois.2023.101056
SCHMIDT-JEFFRIS, R.A. and M.A. CUTULLE, 2019. Non-target effects of herbicides on Tetranychus urticae and its predator, Phytoseiulus persimilis: Implications for biological control. Pest Management Science, 75: 3226-3234. DOI: https://doi.org/10.1002/ps.5443
SCUDELER, E.L., A.S.G. GARCIA, C. PADOVANI, P.F.F. PINHEIRO, and D.C. SANTOS, 2016. Are the biopesticide neem oil and the predator Ceraeochrysa claveri (Navás, 1911) compatible? Journal of Entomology and Zoology Studies, 4: 340–346.
SERRÃO, J.E., A. PLATA-RUEDA, L.C. MARTÍNEZ, and J.C. ZANUNCIO, 2022. Side-effects of pesticides on non-target insects in agriculture: a mini-review. The Science of Nature, 109: 17. DOI: https://doi.org/10.1007/s00114-022-01788-8
SKOURAS, P.J., E. KARANASTASI, I., LYCOSKOUFIS, V. DEMOPOULOS, and A.I. DARRAS, 2023. Toxicity and Lethal Effect of greenhouse insecticides on Coccinella septempunctata (Coleoptera: Coccinellidae) as biological control agent of Myzus persicae (Hemiptera: Aphididae). Toxics, 11: 584. DOI: https://doi.org/10.3390/toxics11070584
SODERLUND, D.M. 2010. Toxicology and mode of action of pyrethroid insecticides. In: R. KRIEGER (ed) Hayes' handbook of pesticide toxicology. Academic Press. pp. 1665-1686.
STANLEY, J., G. PREETHA, J. STANLEY, and G. PREETHA, 2016. Pesticide toxicity to arthropod predators: Exposure, toxicity and risk assessment methodologies. In: J. Stanley & G. Preetha (Eds.), Pesticide Toxicity to Non-Target Organisms: Exposure, Toxicity and Risk Assessment Methodologies, pp.1-98. Springer. DOI: https://doi.org/10.1007/978-94-017-7752-0
TABEBORDBAR, F., P. SHISHEHBOR, M. ZIAEE, and F. SOHRABI, 2020. Effects of field recommended concentrations of three different insecticides on life table parameters of the parasitoid Trichogramma evanescens (Hym: Trichogrammatidae) under laboratory conditions. Plant Pest Research, 9: 11-23 (in Persian with English summary).
TAHIR, H. M., R.A.B.I.A. YAQOOB, U. AKHTAR, AND K. AHMED, 2014. Toxicity and avoidance behaviour of Coccinella septempunctata (Coleoptera: Coccinellidae) against deltamethrin. Biologia (pakistan), 60: 305-307.
THOMSON, L.J., D.C. GLENN, and A.A. HOFFMANN, 2000. Effects of sulfur on Trichogramma egg parasitoids in vineyards: Measuring toxic effects and establishing release windows. Australian Journal of Experimental Agriculture, 40: 1165-1171. DOI: https://doi.org/10.1071/EA00074
TILLMAN, P.G. and J.E. MULROONEY, 2000. Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology, 93: 1638-1643. DOI: https://doi.org/10.1603/0022-0493-93.6.1638
TUNCA, H., N. KILINÇER, and C. ÖZKAN, 2012. Side-effects of some botanical insecticides and extracts on the parasitoid, Venturia canescens (Grav.) (Hymenoptera: Ichneumonidae). Türkiye Entomoloji Dergisi, 36: 205-214.
VAN ASPEREN, K., 1958. Mode of action of organophosphorus insecticides. Nature, 181: 355-356.
WANG, H., Y. LU, J. CHEN, J. LI, and S. LIU, 2012. Subcritical water extraction of alkaloids in Sophora flavescens Ait. and determination by capillary electrophoresis with field-amplified sample stacking. Journal of Pharmaceutical and Biomedical Analysis, 58: 146-151. DOI:  https://doi.org/10.1016/j.jpba.2011.09.014
WILES, J.A. and P.C. JEPSON, 1995. Dosage reduction to improve the selectivity of deltamethrin between aphids and coccinellids in cereals. Entomologia experimentalis et applicata, 76: 83-96. DOI: https://doi.org/10.1111/j.1570-7458.1995.tb01948.x
YOU, Y., Z. ZENG, J. ZHENG, J. ZHAO, F. LUO, Y. CHEN, M. XIE, X. LIU, and H. WEI, 2022. The toxicity response of Coccinella septempunctata L. (Coleoptera: Coccinellidae) after exposure to sublethal concentrations of acetamiprid. Agriculture, 12: 1642. DOI: https://doi.org/10.3390/agriculture12101642