بهینه‌سازی محیط کشت صنعتی و فرمولاسیون جدایه Bacillus subtilis B2 و مهار سفیدک پودری خیار در گلخانه توسط آن

نوع مقاله : مدیریت آفات و بیماری‌های گیاهی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

2 2- محقق بخش تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی گلستان، سـازمان تحقیقـات، آمـوزش و تـرویج کشـاورزی، گرگان، ایران.

3 3- دانشیار گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی دانشگاه شهید بهشتی، اوین، تهران، ایران.

10.22092/jaep.2025.367914.1534

چکیده

در این تحقیق، امکان تولید انبوه و فرمولاسیون جدایه باکتری Bacillus subtilis B2 با قابلیت بیوکنترلی بر روی سفیدک سطحی خیار بررسی شد. برای بهینه­سازی محیط کشت باکتری  B. subtilis، غربالگری منابع کربن و نیتروژن مختلف از نرم افزار® (Design Expert) استفاده شد. براساس نتایج طراحی مرکب مرکزی (central composite) و روش رویه-پاسخ ، غلظت بهینه ملاس چغندر و عصاره ذرت خیسانده (CSL) در محیط کشت برای تولید حداکثر توده سلولی باکتری به‌ترتیب 6-45/4 و 6-82/3 گرم در لیتر بود. بر اساس نتایج بهینه­سازی فاکتور­های محیطی با روش طراحی فاکتوریل کسری، حداکثر توده سلولی باکتری در محیط کشت بهینه با دمای32 درجه سلسیوس، هم‌زن 90 دور در دقیقه، درصد زادمایه 5/3 و اسیدیته 6 حاصل شد. پس از بهینه­سازی محیط کشت، در مجموع 18 فرمولاسیون مختلف پودری خشک با استفاده از مواد حامل و مواد افزودنی مختلف تهیه شد. بیشترین جمعیت سلول زنده باکتری پس از شش ماه نگهداری در دمای 4 و 24 درجه سلسیوس، در فرمولاسیون شماره 3 حاوی تالک، سدیم آلجینات و تری­هالوز، به‌ترتیب با جمعیت 108×9/7 و 107×2/4 سلول زنده در هر گرم فرمولاسیون حاصل شد. ماندگارترین فرمولاسیون حاوی باکتری  B. subtilis برای کنترل سفیدک پودری خیار در گلخانه انتخاب و مورد بررسی قرار گرفت. نتایج نشان داد بین درصد کنترل بیماری در تیمار فرمولاسیون جدایه باکتری(42/45 درصد) و قارچ‌کش دومارک( 53/46 درصد) اختلاف معنی­داری وجود نداشت.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimizations of commercial culture medium of Bacillus subtilis isolate B2 and its formulation for controlling powdery mildew of cucumber at greenhouse

نویسندگان [English]

  • lachin mokhtarnejad 1
  • Samira Shameli 2
  • mohsen farzaneh 3
1 Plant Protection Research Department, West Azarbaijan Agricultural Research, Education and Extension Center, AREEO, Urmia, Iran.
2 Plant Protection Research Department, Golestan Agricultural Research, Education and Extension Center, AREEO, Gorgan, Iran.
3 3- Associate professor, Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
چکیده [English]

In this research, the possibility of mass production and formulation of bacterial isolate Bacillus subtilis B2 with antagonistic activity against powdery mildew of cucumber were investigated. In order to optimize the culture medium, screening of different carbon and nitrogen sources was performed using Design Expert® software. Based on the central composite design, optimal concentration of beet molasses and corn steep liquor (CSL) in the culture medium to produce maximum bacterial cell biomass was 4.45-6 and 3.82-6 g/liter, respectively. Based on the optimization of environment factors, the maximum bacterial biomass was obtained at a temperature of 32 °C, a stirring speed of 90 rpm, 3.5% of inoculums and pH of 6. Subsequent the biomass production, additional research was carried out with the objective of formulation the bacterial isolate. Totally 18 different formulations prepared with different carriers and adjutants. The highest population of B. subtilis B2 produced after six months storage at 4 °C and 24°C in formulation No. 3, containing sodium alginate and trihalose, with 7.9×108 and 4.2×107 CFU per gram of formulation respectively.The best formulation of B. subtilis selected based on the highest shelf life to evaluate the ability of formulations for controling powdery mildew of cucumber under greenhouse conditions. The results showed that the B. subtilis formulation and Dumark fungicide reduces the disease severity by 45.42% and 46.53%, respectively which express no significant difference between them.

کلیدواژه‌ها [English]

  • Biological control
  • commercialization
  • cucumber
  • powdery mildew
 
ABADIAS, M., N.J. TEIXIDO, A. USALL, J. BENABARRE, and I. VINAS, 2001. Viability, efficacy and stability of freeze-dried biocontrol agent Candida sake using different protective and rehydration media, Journal of Food Protection, No. 64: 856-861.
ARUMUGANATHAN, T., M.R. MANIKANTAN, R.D., RAI, S. ANANDAKUMAR, and V. KHARE, 2009. Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. International Agrophysics, No. 23: 1–7.
ARMSTRONG, N.A., 2006. Pharmaceutical Experimental Design and Interpretation, 2th ed. Boca Raton: Talor & Francis. Pp. 1-4, 19-20.
ATANASOVA-PANCEVSKA, N. and D. KUNGULOVSKI, 2018. Isolation, characterization and formulation of antagonistic bacteria agent fungal plant pathogen, Agrofor International Journal, No. 3: 129-137. DOI: http://doi.org/10.7251/AGRENG1803080A
 
 
 
 
 
 
 
 
BERTOLIN, T.E., W. SCHMIDELL, A.E. MARIORANO, J. CASARA, and J.A.V. COSTA, 2003. Influence of carbon, nitrogen and phosphorous sources on glucoamylase production by Aspergillus awamori in solid state fermentation, Zeitschrift fur Naturforschung, No. 58: 708-712. DOI: doi.org/10.1515/znc-2003-9-1020
BONATERRA, A., E. BADOSA, J. CABREFIGA, J. FRANCES, and R. Montesinos, 2012. Prospect and limitations of microbial pesticides for control of bacterial and fungal pome fruit tree diseases, Trees, No. 26: 215-226. doi: http://doi.org/10.1007/s00468011-0626-y
FRAVEL, D.R., J.A. LEWIS, and J.C. CHITTAMS, 1995. Alginate prill formulations of Talaromyces flavues with organic carriers for biocontrol of verticillium dahlia, Phytopathology, No. 85: 165-8. Doi: http://doi.org/10.1094/Phyto-85-165
GARCIA, A.H., 2011, Anhydrobiosis in bacteria: from physiology to applications, Journal of Bioscience, No. 36: 939–950.
GLAZER, A.N. and H. Nikaido, 1995 Microbial biotechnology, Freeman, New York, DOI: doi.org/10.1007/0-387-30741-9_12.
GOTORr-VILA, A., J. USALL, R. TORRES, C. SOLSONA, and N. TEIXIDO, 2017. Biocontrol products based on Bacillus amyloliquefaciens CPA-8 using fluid-bed spray-drying process to control postharvest brown rot in stone fruit, LWT-Food Science and Technology, No. 82: 274–282. DOI: http://doi.org/10.1016/j.lwt.2017.04.034.
GOTORr-VILA, A., J. USALL, R. TORRES, C. SOLSONA, and N. TEIXIDO, Enhanced shelf-life of the formulated biocontrol agent Bacillus amyloliquefaciens CPA-8 combining diverse packaging strategies and storage conditions, International Journal of Food Microbiology, No. 290: 205–213. DOI: http://doi.org/10.1016/j.ijfoodmicro.2018.10.013
HOLLOMON, D., I. WHEELER, R. BELANGER, W. BUSHNELL, A. DIK, and T. CARVER, 2002. Controlling powdery mildews with chemistry, American Phytopathology Society Press, Pp. 231-239. DOI: https://doi.org/10.1007/BF02765797
JAMBHULKAR, P.P., P. SHARMA, and R. YADAV, 2016. Delivery systems for introduction of microbial inoculants in the field,” in Microbial Inoculants in Sustainable Agricultural Productivity (New Delhi: Springer), Pp. 199–218. DOI: http://doi.org/10.1007/978-81-322-2647-5
JOE, M.M., B. KARTHIKEYAN, P.S. CHAUHAN, C. SHAGOL, M.R. ISLAM, M. DEIVEEKASUNDARAM, and T. SA, 2012. Survival of Azospirillum brasilense flocculated cells in alginate and its inoculation effect on growth and yield of maize under water deficit conditions, European Journal of Soil Biology, No. 50: 198–206. DOI: doi.org/10.1016/j.ejsobi.2012.03.002
JONES, K.A. and H.D. BURGES, 1998. Technology of formulation and application. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments, Springer, Netherlands, Dordrecht, Pp 7–30.
KEINATH, A.P. and V.B. DU BOSE, 2012. Controlling powdery mildew on cucurbit rootstock seedlings in the greenhouse with fungicides and biofungicides, Crop Protection, No.42: 338–344. DOI: doi.org/10.1016/j.cropro.2012.06.009.
KIM, Y.H., S.W. Kang, J.H. Lee, H. Chang, Ch. Yun, H.D. Paik, CH.W. Kang, and S.W. Kim, 2007. High cell density fermentation of Saccharomyces cerevisiae JUL3 in fed-batch culture for the production of β-Glucan, Journal of Industrial and Engineering Chemistry, No. 13: 153-158.
KLOSE, S. and Tabatabai, M.A. 1999. Urease activity of microbial biomass in soils. Soil Biology and Biochemistry. No. 31: 205–211.
LAZIC, Z. R., 2004. Design of Experiments in Chemical Engineering, Morristown: Wiley- VCH, pp. 164-165.
MARTINEZ-CRUZ, J., D. ROMERO, J. DAVILA, C. and A. PEREZE-GARCIA, 2014. The Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions, Fungal Genetics and Biology, No. 71: 21–31. DOI: doi.org/10.1016/j.fgb.2014.08.006.
MCGRATH, M.T. and N. SHISHKOFF, 2003. First report of the cucurbit powdery mildew fungus (Podosphaera xanthii) resistant to strobilurin fungicides in the United States, Plant Disease, No. 87: 1007. DOI: doi.org/10.1094/PDIS-02-14-0210-PDN.
MELIN, P., S. HAKANSSON, T.H. EBERHAD, and S. SCHNURER, 2006.  Survival of the biocontrol yeast Pichia anomala after long-term storage in liquid formulations and different temperatures, assessed by flow cytometry, Journal of Applied Microbiology, No. 100: 264-271. DOI: doi.org/10.1111/j.1365-2672.2005.02778.x.
OH, S.E., B. MIN, and B.E. LOGAN, 2004. Cathode performance as a factor in electricity generation in microbial fuel cells, Environmental Science and Technology, No. 38: 4900-4904. DOI: https://doi.org/10.1007/978-3-030-04474-9_8.
PEDRINI, S., D. J. MERRITTt, J. STEVENS, and K. DIXON, 2017. Seed coating: science or marketing spin?, Trends Plant Science, No: 22, 106–116. DOI:  doi.org/10.1016/j.tplants.2016.11.002.
QI, Q., C. FAN, H. WU, L. SUN, and C. CAOA, 2023. Preparation of Trichoderma asperellum Microcapsules and Biocontrol of Cucumber Powdery Mildew, Microbiology spectrum, No. 11: 321-332. DOI: doi.org/10.1128/spectrum.05084-22.
ROSSELENBROICH, H.J. and D. STUEBLER, 2008. Botrytis cinerea-history of chemical control and novel fungicides for its management, Crop Protection, No. 19: 557-561. DOI: doi.org/10.1016/S0261-2194(00)00072-7.
RUR, M., B. RAMERT, M. HOKEBERG, R.R. VETUKURI, L. GRENVILLE-RENVILLE-BRIGGS, and E. LILJEROTH, 2018. Screening of alternative products for integrated pestmanagement of cucurbit powdery mildew in Sweden, European Journal of Plant Pathology, No. 150: 127-138. DOI: doi.org/10.1007/s10658-017-1258-x.
SABERI RISEH, R., M. HASSANISAADI, M. VATANKHAH, and S. RAJENDRr, 2022. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. International Journal of Biological Macromolecules. No. 222: 1589–1604. DOI: http://doi.org/10.1016/j.ijbiomac.2022.09.278
SAFAEIi, M., A. JORKESH, and J. OLAFATI, 2023. Chemical and biological products for control of powdery mildew on cucumber, International journal of vegetable science, No. 28: 233–238. DOI: doi.org/10.3390/agriculture13081558.
VERMA, M., S.K. BRAR, R.D. TYAGIi, SURAMPALLI, R.Y. and J.R. VALERO, 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control, Biochemistry Engineering Journal, No. 37: 1–20. DOI: doi.org/10.1016/j.bej.2007.05.012.
VIDHYASEKARAN, P. and M. MUTHAMILAN, 1995. Development of formulations of Pseudomonas fluorescens for control of chickpea wilt, Plant Disease, No. 79: 782–786. doi: http://doi.org/10.1094/PD-79-0782
WEE, Y.J., J.N. KIM, and H.W. RYU, 2006. Biotechnological Production of Lactic Acid and Its Recent Applications, Food Technology and Biotechnology, No. 44: 163-172. DOI: http://doi.org/09e415089c07a1f9c7000000
WU, L., Y. ZHANG, J. TIAN, G. ZHANG, and W. ZHANG, 2022. Nitrogen rate for cotton should be adjusted according to water availability in arid regions, Field Crop Research, No. 285: 108606. DOI: doi.org/10.1016/j.fcr.2022.108606.
ZHANG, Y., J. XIAO, K. YANG, Y. WANG, Y. TIAN, and Z. LIANG, 2022. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt, Plos One, 17:e0272702. DOI:  http://doi.org/10.1371/journal.pone.0272702