اثرات متقابل تنش خشکی و قارچ میکوریزا بر گیاه باقلا و شته سبز نخودفرنگی Acyrthosiphon pisum

نوع مقاله : حشره شناسی کشاورزی

نویسندگان

1 گروه تنوع زیستی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

3 گروه تنوع زیستی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

10.22092/jaep.2025.367959.1535

چکیده

تنش خشکی از مهم‌ترین تنش‌های غیرزیستی و از عمده‌ترین فاکتورهای محیطی محدود کننده رشد و نمو گیاهان و تولید محصولات کشاورزی می‌باشد. استفاده از هم‌زیست‌های مفید مانند قارچ میکوریزا به گیاه در شرایط تنش خشکی کمک می‌کنند. در این پژوهش اثر متقابل سطوح مختلف تنش خشکی و قارچ میکوریزا روی دو رقم گیاه باقلا و یکی از آفات مهم آن یعنی شته‌ سبز نخود فرنگی (Acyrthosiphon pisum) مطالعه شد. شاخص‌های رشدی گیاه باقلا و شاخص‌های زیستی و رشد جمعیت شته سبز نخودفرنگی اندازه‌گیری و بررسی شد. نتایج حاصل از آزمایش سال اول نشان دهنده اثر متقابل تنش خشکی با قارچ میکوریزا روی شاخص‌های سطح برگ و وزن ‌تر گیاه و همچنین اثر متقابل سه طرفه بین رقم گیاه، تنش خشکی و قارچ میکوریزا روی شاخص سطح برگ گیاه بود. در آزمایش سال دوم نتایج نشان داد که تنش خشکی باعث کاهش شاخص‌های رشدی گیاه مانند ارتفاع گیاه و تعداد برگ گیاه می‌شود. همچنین تنش خشکی روی شاخص‌های زیستی شته سبز نخودفرنگی مانند بقاء، طول عمر و مرگ و میر اثر منفی داشت و همچنین اثر متقابل دو طرفه تنش خشکی و قارچ میکوریزا روی شاخص بقاء شته اثرگذار بود. با توجه به نتایج به‌دست آمده از این پژوهش می‌توان گفت تنش خشکی شدید اثرات قابل ملاحظه‌ای بر گیاه و شته دارد و می‌تواند بر عملکرد گیاه باقلا و همچنین جمعیت شته سبز نخودفرنگی تأثیر داشته باشد. البته اثر متقابل تنش خشکی و قارچ میکوریزا بر رشد گیاه و همچنین بقاء شته قابل چشم پوشی نیست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interactions between drought stress and mycorrhiza fungi on the bean plant and the pea aphid, Acyrthosiphon pisum (Hem.: Aphididae)

نویسندگان [English]

  • Homa Mohseni Sangtabi 1
  • Mohsen Mehrparvar 2
  • Azadeh Habibi 1
  • Seyed Mozaffar Mansouri 3
1 Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2 Graduate University of Advanced Technology
3 Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
چکیده [English]

Drought stress is a pivotal abiotic stressor and a key environmental factor constraining plant growth and crop yield. Utilizing beneficial symbionts like mycorrhizal fungi can ameliorate plant resilience under drought conditions. The bean plant holds substantial agricultural importance, which has faced significant threat from the pea aphid, Acyrthosiphon pisum. This study investigates the interactions between drought stress and mycorrhizal fungi and their effects on bean plant and the pea aphid. We investigated the growth parameters of bean plants, along with the population growth and biological traits of the pea aphid, under the combined effects of drought stress and Mycorrhizal fungi symbiosis. In the first-year experiment, results showed an interactive effect of drought stress with mycorrhizal fungi on leaf area and plant weight indices. In addition, there was a three-way interaction among plant variety, drought stress, and mycorrhizal fungi on plant leaf area index. In the second year, drought stress led to a decrease in plant growth indices such as plant height and number of leaves. Additionally, drought stress negatively impacted the biological parameters of the pea aphid, survival rate, lifespan, and mortality. Also there was a two-way interaction of drought stress and mycorrhizal fungi on the aphid survival rate. These findings suggest that severe drought stress significantly affects both plants and aphids, potentially influencing the performance of the bean plant and the population growth of the pea aphid. The effect of interaction between drought stress and mycorrhizal fungi on plant growth and aphid survival was significant.

کلیدواژه‌ها [English]

  • Symbiotic fungi
  • plant growth indices
  • plant-insect interactions
  • pest population dynamics
  • survival
 AHMED, S.S., LIU, D. and J.C. SIMON, 2017. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system. PLoS One, 12(10): e0186599. DOI: https://doi.org/10.1371/journal.pone.0186599
ARCHER, TI, BYNUM, E.D.J.R., ONKEN, A.B. and C.W. WENDT, 1995. Influence of water and nitrogen-fertilizer on biology of the Russian wheat aphid (Homoptera: Aphididae) on wheat. Crop Protection. 14: 165-169. DOI: https://doi.org/10.1016/0261-2194(95)92872-K
AUCLAIR, J. L. 1963. Aphid feeding and nutrition. Annual Review of Entomology, 8: 439-490. DOI: https://doi.org/10.1146/annurev.en.08.010163.002255
BABIKOVA, Z., GILBERT, L., BRUCE, T.J.A., PICKETT, J.A. and D. JOHNSON, 2013. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Functional Ecology, 28: 375-385. DOI: https://doi.org/10.1111/1365-2435.12181
BABIKOVA, Z., GILBERT, L., RANDALL, K. C., BRUCE, T. J., PICKETT, J. A. and D. JOHNSON, 1014. Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean (Vicia faba) to aphids. Journal of Experimental Botany, 65(18): 5231-5241. DOI: https://doi.org/10.1093/jxb/eru283
BAGHERI, M., SANTOS, C.S., RUBIALES, D. and M.W. VASCONCELOS, 1023. Challenges in pea breeding for tolerance to drought: Status and prospects. Annals of Applied Biology, 183(2): 108-120. DOI: https://doi.org/10.1111/aab.12840
BEETGE, L. and K. KRÜGER, 1019. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Scientific Reports, 9: e3645. DOI: https://doi.org/10.1038/s41598-018-37493-8
BRAY, EA. 1997. Plant response to water deficit. Trends of Plant Science, 2: 48-54.
COLELLA, T., CANDIDO, V., CAMPANELLI, G., CAMELE, I. and D. BATTAGLIA, 1014. Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica, 42: 235-246. DOI: https://doi.org/10.1007/s12600-013-0356-3
COSME, M., STOUT, MJ. and S. WURST 2011. Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus). Mycorrhiza, 21: 651-658. DOI: https://doi.org/10.1007/s00572-011-0399-6
DARDEAU, F., BERTHIER, A., FEINARD-DURANCEAU, M., BRIGNOLAS, F., LAURANS, F., LIEUTIER, F. and A. SALLÉ, 1015. Tree genotype modulates the effects of water deficit on a plant-manipulating aphid. Forest Ecology and Management, 353: 118-125. DOI: https://doi.org/10.1016/j.foreco.2015.05.037
DOUGLAS, A. E. 1006. Phloem-sap feeding by animals: Problems and solutions. Journal of Experimental Botany, 57: 747-754. DOI: https://doi.org/10.1093/jxb/erj067
GARG, B.K., KATHJU, S. and U. BURMAN, 2001. Influence of water stress on water relations, photosynthetic parameters and nitrogen metabolism of moth bean genotypes. Biologia Plantarum, 44: 289-292. DOI: https://doi.org/10.1023/A:1010215812791
GREENSLADE, A.F. C., WARD, J.L., MARTIN, J.L., COROL, D.I., CLARK, S.J., SMART, L.E. and G.I. ARADOTTIR, 2016. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi. Annals of Applied Biology, 168: 435-449. DOI: https://doi.org/10.1111/aab.12274
GUO, H., SUN, Y., PENG, X., WANG, Q., HARRIS, M. and F. GE, 2016. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. Journal of Experimental Botany, 67: 681-693. DOI: https://doi.org/10.1093/jxb/erv481
HUBERTY, A.F. and R.F. DENNO, 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85: 1383-1398. DOI: https://doi.org/10.1890/03- 0352
PHILLIPS, J.M. and D.S. HAYMAN, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55(1):  158-161. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
KANSMAN, J. T., BASU, S., CASTEEL, C. L., CROWDER, D. W., LEE, B. W., NIHRANZ, C. T. and D. L. FINKE, 2022. Plant water stress reduces aphid performance: exploring mechanisms driven by water stress intensity. Frontiers in Ecology and Evolution, 10: 846908. https://doi.org/10.3389/fevo.2022.846908
KANSMAN, J., NALAM, V., NACHAPPA, P. and D. FINKE, 2020. Plant water stress intensity mediates aphid host choice and feeding behaviour. Ecological Entomology, 45: 1437-1444. DOI: https://doi.org/10.1111/een.12928
KHAN, M.A., ULRICHS, C., and I. MEWIS, 2011. Water stress alters aphid induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology, 21: 235-242. DOI: https://doi.org/10.1007/s00049-011-0084-4
KHAN, M.A.; ULRICHS, C.; and I. MEWIS, 2010. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomologia Experimentalis et Applicata, 137: 229-236. DOI: https://doi.org/10.1111/j.1570-7458.2010.01059.x
KHATUN, M., SARKAR, S., ERA, F. M., ISLAM, A. M., ANWAR, M. P., FAHAD, S., DATTA, R. and A. A. ISLAM, 2021. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy, 11(12) :2374. DOI: https://doi.org/10.3390/agronomy11122374
KING, C., JACOB, H.S. and F. BERLANDIER, 2006. The influence of water deficiency on the relationship between canola (Brassica napus L.), and two aphid species (Hemiptera: Aphididae), Lipaphis erysimi (Kaltenbach) and Brevicoryne brassicae (L.). Australian Journal of Agricultural Research, 57: 439-445. DOI:  https://doi.org/10.1071/AR05137
KORICHEVA, J., GANGE, A.C., J. and T. ONES, 2009. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology, 90: 2088-2097. DOI: https://doi.org/10.1890/08-1555.1
KORICHEVA, J. and S. LARSSON, 1998. Insect performance on experimentally stressed woody plants: A meta-analysis. Annual Review of Entomolog,, 43: 195-216. DOI: https://doi.org/10.1146/annurev.ento.43.1.195
LEE, B.R., MUNEER, S., AVICE, J.C., JUNG, W.J. and T.H. KIM, 2012. Mycorrhizal colonization and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza, 22, 525-534. DOI: https://doi.org/10.1007/s00572-012-0430-6
LEYBOURNE, D. J., PREEDY, K. F., VALENTINE, T. A., BOS, J. I. and A. J. KARLEY, 2021. Drought has negative consequences on aphid fitness and plant vigor: Insights from a meta‐analysis. Ecology and Evolution, 11(17): 11915-11929. DOI: https://doi.org/10.1002/ece3.7957
LI H., PAYNE W.A., MICHELS G.J. and C.M. RUSH 2008. Reducing plant abiotic and biotic stress: Drought and attacks of greenbugs, corn leaf aphids and virus disease in dryland sorghum. Environmental and Experimental Botany, 63: 305-316. DOI: https://doi.org/10.1016/j.envexpbot.2007.11.014
LIU J. N., WU L. J., WEI S. L., XIAO X., SU C. X., JIANG P., SONG, Z., WANG, T. and Z. YU, 2007. Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 52 29-39. DOI:  https://doi.org/10.1007/s10725-007-9174-2
LOBELL, D. B. and S. M. GOURDJI, 2012. The influence of climate change on global crop productivity. Plant Physiology, 160: 1686-1697. DOI: https://doi.org/10.1104/pp.112.208298
MAHIEU, S., GERMON, F., AVELINE, A., HAUGGAARD-NIELSEN, H., AMBUS, P. and E. S. JENSEN, 2009. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.). Soil Biology and Biochemistry, 41(2): 380-387. DOI: https://doi.org/10.1016/j.soilbio.2008.11.021
MCVEAN, R. I. and A. F. DIXON, 2001. The effect of plant drought-stress on populations of the pea aphid Acyrthosiphon pisum. Ecological Entomology, 26(4). https://doi.org/10.1046/j.1365-2311.2001.00341.x
MEWIS, I., KHAN, M. A. M., GLAWISCHNIG, E., SCHREINER, M. and C. ULRICHS, 2012. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS One: 7:e48661. DOI: https://doi.org/10.1371/journal.pone.0048661
MODY, K., EICHENBERGER, D. and S.DORN, 2009. Stress Magnitude Matters: Different Intensities of Pulsed Water Stress Produce Non-Monotonic Resistance Responses of Host Plants to Insect Herbivores. Ecological Entomology, 34: 133-143. DOI: https://doi.org/10.1111/j.1365-2311.2008.01053.x
MORAN, P. J. and G. A. THOMPSON, 2001. Molecular responses to aphid feeding in arabidopsis in relation to plant defense pathways. Plant Physiology, 125: 1074-1085. https://doi.org/10.1104/pp.125.2.1074
OLSON, D., BERRY, H. M., RIGGS, J. D., ARGUESO, C. T. and S. K. GOMEZ, 2022. Phytohormone profile of Medicago in response to mycorrhizal fungi, aphids, and gibberellic acid. Plants, 11(6) :720. DOI: https://doi.org/10.3390/plants11060720
PATTON, M. F., BAK, A., SAYRE, J. M., HECK, M. L. and C. L. CASTEEL, 2020. A polerovirus, Potato leafroll virus, alters plant–vector interactions using three viral proteins. Plant, Cell & Environment, 43: 387-399. DOI: https://doi.org/10.1111/pce.13684
PHILLIPS, J.M. and D.A. HAYMAN, 1970. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Transactions of the British Mycological Society, 55: 158-161. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
PONS, C., VOß, A. C., SCHWEIGER, R. and C. MÜLLER, 2020. Effects of drought and mycorrhiza on wheat and aphid infestation. Ecology and Evolution, 10(19) :10481-10491. DOI: https://doi.org/10.1002/ece3.6703
PONS, X. and G.M. TATCHELL, 1995. Drought stress and cereal aphid performance. Annals of Applied Biology, 126: 19-31. DOI: https://doi.org/10.1111/j.17447348.1995.tb05000.x
PRICE, P. W. 2019. The Plant vigor Hypothesis and herbivore attack. Oikos, 62, 244–251. DOI: https://doi.org/10.2307/3545270
PRUDENT, M., VERNOUD, V., GIRODET, S. and C. SALON, 2016. .How nitrogen fixation is  modulated in response to different water availability levels and during recovery: A structural and functional study at the whole plant level. Plant and Soil, 399(1) :1-12. DOI: https://doi.org/10.1007/s11104-015-2674-3
QUANDAHOR, P., LIN, C., GOU, Y., COULTER, J.A. and C. LIU, 2019. Leaf Morphological and Biochemical Responses of Three Potato (Solanum tuberosum L.) Cultivars to Drought Stress and Aphid (Myzus persicae Sulzer) Infestation. Insects, 10: 11-12. DOI: https://doi.org/10.3390/insects10120435
QUANDAHOR, P., YAHAYA, I., KUSI, F., SUGRI, I., MAHAMA, G. Y., YIRZAGLA, J., ALHASSAN, A.K., DAWUDA, M.M., TENGEY, T.K., YAHAYA, A. and M.A., OGUM, 2023. Aphids Response to Drought Stress Hypothesis Vary between Species. Open Access Library Journal, 10(9): 1-18. DOI: https://doi.org/10.4236/oalib.1110633
SELEIMAN, M. F., AL-SUHAIBANI, N., ALI, N., AKMAL, M., ALOTAIBI, M., REFAY, Y., DINDAROGLU, T., ABDUL-WAJID, H. H. and M. L. BATTAGLIA, 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2) :259. DOI: https://doi.org/10.3390/plants10020259
SIMPSON, K.L.S., JACKSON, G.E. and J. GRACE, 2012. The response of aphids to plant water stress—The case of Myzus persicae and Brassica oleracea var. capitata. Entomologia Experimentalis et Applicata, 142: 191-202. DOI: https://doi.org/10.1111/j.1570-7458.2011.01216.x
STREETER, J.G., LOHNES D.G. and R.J. FIORITTO 2001. Paterns of pinitrol accumulation in soybean plants and relationships to drought tolerance. Plant Cell and Environment, 24: 429-438. DOI: https://doi.org/10.1046/j.1365-3040.2001.00690.x
TOMCZAK, V.V. and C. MÜLLER, 2017. Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid. Journal of Insect Physiology, 98: 258-266. DOI: https://doi.org/10.1016/j.jinsphys.2017.01.016
VESSAL, S.; AREFIAN, M. and K.H. SIDDIQUE, 2020. Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC genomics, 21: 1-15. DOI: https://doi.org/10.1186/s12864-020-06930-2
VOS, C., CLAERHOUT, S., MKANDAWIRE, R., PANIS, B., DE WAELE, D. and A. ELSEN, 2012. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 354: 335-345. DOI: https://hdl.handle.net/10568/35836
WHITE, T.C.R. 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology, 50: 905-909. DOI: https://doi.org/10.2307/1933707
WILKINSON, T., ASHFORD, D., PRITCHARD, J. and A. DOUGLAS, 1997. Honeydew sugars and osmoregulation in the pea aphid Acyrthosiphon pisum. Journal of Experimental Biology, 200: 2137-2143. DOI: https://doi.org/10.1242/jeb.200.15.2137
XIE, H., SHI, J., SHI, F., XU, H., HE, K. and Z. WANG, 2020. Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. Journal of Experimental Botany, 71: 2713-2722. DOI: https://doi.org/10.1093/jxb/eraa017
YOUNGINGER, B., BARNOUTI, J. and D. C. MOON, 2009. Interactive effects of mycorrhizal fungi, salt stress, and competition on the herbivores of Baccharis halimifolia. Ecological Entomology, 34(5) :580-587. DOI: https://doi.org/10.1111/j.1365-2311.2009.01105.x