بررسی عصاره چند گونه جلبک دریایی روی ویروس وای سیب‌زمینی در گیاه توتون

نوع مقاله : بیماری‌شناسی گیاهی

نویسندگان

1 دانشیار گروه گیاهپزشکی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان ایران

2 گروه گیاهپزشکی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشجوی دکتری دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 کارشناس گروه شیلات . اداره شیلات گرگان استان گلستان

10.22092/jaep.2025.361115.1465

چکیده

یکی از مهم‌ترین ویروس­های توتون که از پراکنش جهانی برخوردار است، ویروس وای سیب­زمینی (Potato Virus Y, PVY) می‌باشد. به‌منظور بررسی تأثیر غلظت‌های مختلف عصاره آبی و اتانولی سه گونه جلبک قرمز دریایی (Digenea simplex (Wulfen) C.Agardh ، Gracilaria corticata (J. Agardh) J.Agardh و Padina australis Hauck) بر شدت و غلظت نهایی ویروس وای سیب‌زمینی
(Accession: MF688631.1) و میزان کلروفیل گیاه توتون، آزمایشی در قالب طرح کاملاً تصادفی با چهار تکرار در سال زراعی 1396-1397 در شرایط گلخانه در شهرستان گرگان انجام شد. نتایج نشان داد که تأثیر نوع جلبک و نوع عصاره اثر معنی‌داری بر شدت علائم، غلظت نهایی ویروس و میزان کلروفیل در بوته توتون داشت. به‌طوری‌که جلبک P. australis بیشترین اثر را بر کاهش غلظت ویروس (شدت جذب نوری برابر 943/1) و شدت علائم بیماری (937/2) نشان داد. همچنین بیشترین مقادیر کلروفیل (273/21) نیز در این تیمار مشاهده گردید. نتایج کلی این تحقیق نشان داد میزان تأثیر عصاره‌ها، روی کاهش غلظت ویروس در میزبان توتون تحت تأثیر زمان کاربرد، نوع جلبک و نوع عصاره (آبی یا اتانولی) می‌باشد
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of several seaweeds extracts on Potato Virus Y in tobacco

نویسندگان [English]

  • saeed nasrollanejad 1
  • Masoumeh Khod 2
  • Zeynab Zare 3
  • Bayram Mohammad Gandjiakh 4
1 Associate Prof, Dept of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
2 Department od plant protection University of Gorgan Agricultural and Natural resources
3 students of Gorgan University of Agricultural Sciences and Natural Resources,4
4 Master of Fisheries, Gorgan Agriculture Office
چکیده [English]

One of the most important tobacco viruses with a global distribution is Potato Virus Y (PVY). To investigate the effect of different concentrations of aqueous and ethanolic extracts of three species of red marine algae including Digenea simplex (Wulfen) C.Agardh, Gracilaria corticata (J.Agardh) J.Agardh and Padina australis Hauck on the severity and final concentration of Potato Virus Y (Accession: MF688631.1) and the chlorophyll content of tobacco plants, an experiment was conducted in a completely randomized design with four replications in the 2017-2018 growing season under greenhouse conditions in Gorgan city. The results showed that the type of algae and the type of extract had a significant effect on the severity of symptoms, the final concentration of the virus, and the amount of chlorophyll in tobacco plants. Thus, the algae P. australis showed the greatest effect on reducing the virus concentration (light absorption intensity equal to 1.943) and the severity of the disease symptoms (2.937). The highest chlorophyll content (21.273) was also observed in this treatment. The overall results of this study showed that the effect of the extracts on reducing the concentration of the virus in the tobacco host was influenced by the time of application, the type of algae, and the type of extract (aqueous or ethanolic).
 

کلیدواژه‌ها [English]

  • Bio inhibition
  • chlorophyll conten
  • disease severity
  • ethanolic extract
  • Padina australis
ABDELKHALEK, A., S.H. QARI, M.A.A. ABU-SAIED, A.M. KHALIL, H.A. YOUNES, Y. NEHELA and S.I. BEHIRY, 2021. Chitosan nanoparticles inactivate alfalfa mosaic virus replication and boost innate immunity in Nicotiana glutinosa plants. Plants (Basel), 10(12): 2701. DOI: http://doi.org/10.3390/plants10122701
ABDEL-LATIF, A., R. BADR, I. HASSAN and G. OSMAN, 2018. Effect of Ulva lactuca aqueous extract on growth, minerals, chlorophyll content, rubisco activity and rubisco activase in Zea mays seedlings. Journal of Pure and Applied Microbiology, 12(2): 611-622. DOI: http://doi.org/10.22207/jpam.12.2.19
BALZARINI, J, 2007. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nature Reviews Microbiology, 5: 583. DOI: http://doi.org/10.1038/nrmicro1707
BATEMAN, J. G. and S. R. CHANT, 1979. A modification of the polyethylene glycol technique for the purification of small quantities of tobacco mosaic virus. Microbios, 25(99): 33-43. https://pubmed.ncbi.nlm.nih.gov/393959/
BIRIS-DORHOI, E.S., D. MICHIU, C.R. POP, A.M. ROTAR, M. TOFANA, O.L. POP, S.A. SOCACI and A.C. FARCAS, 2020. Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients, 12(10): 3085. DOI: http://doi.org/10.3390/nu12103085
CHO, M., H. S. LEE, I. J. KANG, M. H. WON and S. YOU, 2011. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry, 127(3): 999-1006. DOI: http://doi.org/10.1016/j.foodchem.2011.01.072
CLARK, M. F. and A. N. ADAMS, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34(3): 475–483. DOI: http://doi.org/10.1099/0022-1317-34-3-475
CONVERSE, R. H., and R. R. MARTIN, 1990. ELISA methods for plant viruses. R., Ball, E. and Deboer, S. (Eds). Serological methods for detection and identification of viral and bacterial plant pathogens. Hampton Academic Press. Pp: 179-196.
COX, S., N. ABU-GHANNAM and S. GUPTA, 2010. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17: 205-220. DOI: http://doi.org/10.21427/D7HC92
DAMIRDAGH, I. S., and R.J. SHEPHARED, 1970. Purification of the Tobacco etch and other viruses of Potato Y group. Phytopathology, 60: 32-142. DOI: http://doi.org/10.1094/Phyto-60-132
EL-GAMAL, A. A, 2010. Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1): 1-25. DOI: http://doi.org/10.1016/j.jsps.2009.12.001
EL-SAWY, M. M., M. M. ELSHARKAWY, J. MOHAMED ABASS and M. H. KASEM, 2017. Antiviral activity of 2-Nitromethyl Phenol, Zinc Nanoparticles and Seaweed extract against Cucumber mosaic virus (CMV) in Eggplant. Journal of Virology and Antiviral Research, 6(2): 90663694. DOI: http://doi.org/10.4172/2324-8955.1000173
ELIWII AL-DULAMI, A.K. and M.A.W. AL-FAHD, 2023. Bio-Mass Production of Spirulina platensis and Its use in Inducing Hostility Resistance Against Potyvirus Potato virus y. Fifth International Conference for Agricultural and Environment Sciences, 1158. DOI: http://doi.org/10.1088/1755-1315/1158/7/072018
GOLOTIN, V. A., A. P. FILSHTEIN, I. V. CHIKALOVETS, N. Y. KIM, V. I. MOLCHANOVA and O. V. CHERNIKOV, 2019. Expression and purification of a new lectin from mussel Mytilus trossulus. Protein Expression and Purification, 154: 62-65.
HAMED, S.M., A.A.A. EL-RHMAN, N. ABDEL-RAOUF and I.B.M. IBRAHEEM, 2018. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences, 7(1): 104-110. DOI: http://doi.org/10.1016/j.bjbas.2017.08.002
HENTATI, F., L. TOUNSI, D. DJOMDI, G. PIERRE, C. DELATTRE, A.V. URSU, I. FENDRI, S. ABDELKAFI and P. MICHAUD, 2020. Bioactive polysaccharides from seaweeds. Molecules, 25(14): 3152. DOI: http://doi.org/10.3390/molecules25143152
HUANG, C. Y., S. J. WU, W. N. YANG, A. W. KUAN and C. Y. CHEN, 2016. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food Chemistry, 197: 1121-9. DOI: http://doi.org/10.1016/j.foodchem.2015.11.100
HULL, R, 2002. Matthews' plant virology. Academic Press, San Diego, California
JIAO, G., G. YU, J. ZHANG and H. S. EWART, 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2): 196–223. DOI: http://doi.org/10.3390/md9020196
MARTINS, B., M. VIEIRA, C. DELERUE-MATOS, C. GROSSO and C. SOARES, 2022. Biological potential, gastrointestinal digestion, absorption, and bioavailability of algae-derived compounds with neuroprotective activity: A comprehensive review. Marine Drugs, 20(6): 362. DOI: http://doi.org/10.3390/md20060362
MIERZIAK, J., K. KOSTYN and A. KULA, 2014. Flavonoids as important molecules of plant interaction with the environment. Molecules, 19: 16240-16265. https://doi.org/10.3390/molecules191016240
MOHAMED, S., S. N. HASHIM and H. A. RAHMAN, 2012. Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends in Food Science and Technology, 23(2): 83–96. DOI: http://doi.org/10.1016/j.tifs.2011.09.001
MORYA, V. K., J. KIM and E. K. KIM, 2012. Algal fucoidan: structural and size dependent bioactivities and their perspectives. Applied Microbiology and Biotechnology, 93: 71–82. DOI: http://doi.org/10.1007/s00253-011-3666-8
NAGORSKAIA, V. P., A. V. REUNOV, L. A. LAPSHINA, I. M. ERMAK and A. O. BARABANOVA, 2008. Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves. Izvestiia Akademii nauk. Seriia Biologicheskaia, 35(3): 360-364. https://pubmed.ncbi.nlm.nih.gov/ 18668717. DOI: http://doi.org/10.1090/0022
OBIED, H. K., M. S. ALLEN, D. R. BEDGOOD, P. D. PRENZLER and K. ROBARDS, 2005. Investigation of Australian olive mill waste for recovery of biophenols. Journal of Agricultural and Food Chemistry, 53(26): 9911-9920.
PAPAGEORGIOU, G. and C. GOVINDJEE, 2005. Chlorophyll a fluorescence, asignature of photosynthesis. Advances in Photosynthesis and Respiration, 19: 100-105. Doi: http://doi.org/10.1007/978-1-4020-3218-9
PARDEE, K. L., P. ELLIS, M. BOUTHILLIER, G. H. N. TOWERS and C. J. FRENCH, 2004. Plant virus inhibitors from marine algae. Canadian Journal of Botany, 82(3): 304–309. DOI: http://doi.org/10.1139/b04-002
PENG, Y., J. LEI, L. HUANG and J. YU, 2004. Effects of Potato Virus Y infection on chloroplast ultrastructure, photosynthesis and chlorophyll fluorescence quenching in potato leaves (abstract). Acta Phytopathologica Sinica, 34(1): 32-36.
POONAM, S, 2015. The seaweed Caulerpa taxifolia was tested for activity against tobacco necrotic virus (TNV). International Journal of Virology and Molecular Biology, 4(1): 1-3. DOI: http://doi.org/10.5923/j.ijvmb.20150401.01
PULZ, O. and W. GROSS, 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65: 635–648. DOI: http://doi.org/10.1007/s00253-004-1647-x
REYNOLDS, R. J, 2011. Potato virus Y (PVY) in Burly tobacco. Phytopathology, 103: 81-84. DOI: http://doi.org/10.1091/0002-1317-34-3-475
RYSLAVA, H., K. MULLER, S. SEMORADOVA, H. SYNKOVA and N, CEROVSKA, 2003. Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato Virus A and Potato Virus Y. Photosynthetica, 41(3): 357-363. DOI: http://doi.org/10.1023/B:PHOT.0000015459.22769.bf
SHAZDEHAHMADI, M. and M. R. SALAVATI MEYBODI, 2016. Evaluation of relative resistance of tobacco to potato virus Y using microsatellite markers (SSR). Agricultural Biotechnology, 6(2): 97-106. DOI: http://doi.org/0.1090/0022-1317-34-3-475
STADNIK, M.J., and M.B. DE FREITAS, 2014. Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39: 111-118. DOI: http://doi.org/10.1590/S1982-56762014000200001
SUDIRMAN, S., Y.H. HSU, J.L. HE and Z.L. KONG, 2018. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice. Plos One, 13(10): 205-252. DOI: http://doi.org/10.1371/journal.pone.0205252
VERMA, H. N., V. K. BARANWAL and S, SRIVASTAVA, 1998. Antiviral substances of plant origin. In plant virus disease control, A. R. K. Hadidi, Khetarpal and H. Koganezawa (Fds.) APS. Press. St. Paul. Minnesota, 154-162.
VERRIER, J. L., V. MARCHAND, B. CAILLETEAU and R. DELON, 2001. Chemical change and cigarette smoke mutagenicity increase associated with CMV and PVY infection in burley tobacco. Coresta meet. Agro Phyto groups. Cape Town, South Africa, 1-12. DOI: http://doi.org/10.1009/0022-1317-34-3-475
WAZIRI, H. M. A, 2015. Plants as antiviral agents. Journal of Plant Pathology and Microbiology, 6(2): 288-301. doi: http://doi.org/10.4172/2157-7471.1000254
ZAID, S. A. A., K. S. D. ABDEL-WAHAB, N. N. ABED, E. K. ABO ELMAGD and R. A. SALAHELDIN, 2016. Screening for antiviral activities of aqueous extracts of some Egyptian seaweeds. The Egyptian Journal of Hospital Medicine, 64: 430–435.
ZHAO, L., X.A. HAO and YF. WU, 2015. Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV). International Journal of Biological Macromolecules, 75: 474-478. DOI: http://doi.org/10.1016/j.ijbiomac.2015.01.058
ZHAO, L., C. H. FENG, K. WU, W. CHEN, Y. CHEN, X. HAO and Y. WU, 2016. Advances and prospects in biogenic substances against plant virus: a review. Pesticide Biochemistry and Physiology, 135: 15-26. DOI: http://doi.org/10.1016/j.pestbp.2016.07.003