ارزیابی اثر برهمکنش‌های اختلاط دوتایی تری‌فلوسولفورون‌متیل، کلریدازون و کلوپیرالید روی علف‌هرز خرفه (Portulaca oleracea L.) با استفاده از مدل‌های هم‌اثر

نوع مقاله : علوم علف‌های هرز

نویسندگان

1 دانشجوی کارشناسی ارشد اگروتکنولوژی گرایش علوم علف‌های هرز ، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا،

2 دانشیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 استادیار گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

10.22092/jaep.2025.368333.1538

چکیده

با هدف بررسی اثر اختلاط دوتایی تری­فلوسولفورون­متیل، کلریدازون و کلوپیرالید روی علف­ هرز خرفه، سه آزمایش جداگانه در محیط بیرون در دانشگاه بوعلی سینا همدان در تابستان 1402 اجرا شد. در هر آزمایش، مقادیر 0، 25/6، 5/12، 25، 50 و 100 درصد دُز برچسب شده از دو علف­کش­ در قالب نسبت­ های اختلاط (100:0)، (80:20)، (60:40)، (40:60)، (20:80) و (0:100) تهیه و در مرحله چهار تا پنج برگی خرفه به‌کار برده شدند. برهمکنش‌های اختلاط علف­کش­ ها پس از برازش یک مدل هم­اثر مناسب (براساس آزمون عدم برازش) روی مقادیر ED50 (مقدار علف­کش لازم برای کنترل 50 درصدی خرفه) به‌دست آمده از نسبت­های مختلف اختلاط تعیین شد. برازش مناسب مدل خطی دُز افزایشی روی مقادیر ED50 به‌دست آمده از نسبت­های مختلف اختلاط کلریدازون + تری­فلوسولفورون­متیل حاکی از وجود اثر افزایشی بین آن‌هاست؛ لذا، آن‌ها اختلاط ­پذیر هستند. برازش مناسب مدل غیرخطی هِولت روی مقادیر ED50 به‌دست آمده از نسبت­ه ای مختلف اختلاط کلوپیرالید + تری­فلوسولفورون­متیل (λ برابر 66/1) حاکی از وجود اثر هم­افزایی بین آن‌هاست؛ لذا، آن‌ها نیز اختلاط­ پذیر هستند. در حالی که برازش مناسب مدل غیرخطی وُیلوند روی مقادیر ED50 به‌دست آمده از نسبت­ های مختلف اختلاط کلوپیرالید + کلریدازون (η1 برابر 7/1 و η2 برابر 8/3) حاکی از وجود اثر هم­کاهی بین آن‌هاست؛ لذا، اختلاط این دو علف‌کش توصیه نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation the effect of binary mixing interactions of triflusulfuron-methyl, chloridazone, and clopyralid on common purslane (Portulaca oleracea L.) by isobole models

نویسندگان [English]

  • S. AZIMI NAIBI 1
  • A. Aliverdi 2
  • G. AHMADVAND 2
  • A.A. CHITBAND 3
1 MSc student in Agrotechnology - Weed Science, Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan
2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan
3 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
چکیده [English]

To investigate effect of mixing triflusulfuron-methyl, chloridazone, and clopyralid on common purslane, three experiments were separately conducted at outdoor condition at Bu-Ali Sina University, Hamadan in the summer of 2023. In each experiment, 0, 6.25, 12.5, 25, 50, and 100% of the labeled dose of the two herbicides were prepared in the mixture ratios of (100:0), (80:20), (60:40), (40:60), (20:80), and (0:100) and applied at the 4-5 leaf stage of common purslane. The mixability of the herbicides was evaluated using an appropriate isobole model, after fitting a suitable isobole model (based on a lack-of-fit test), on the ED50 values ​​(herbicide rate required to control 50% of common purslane) obtained from different mixture ratios. The good fit of the linear Additive Dose model on the ED50 values ​​obtained from different mixture ratios of chloridazone + triflusulfuron-methyl indicates an additive effect between them; therefore, they are mixable. The good fit of the nonlinear Hewlett model on the ED50 values ​​obtained from different mixture ratios of clopyralid + triflusulfuron-methyl (λ = 1.66) indicates a synergistic effect between them; therefore, they are also mixable. While the good fit of the nonlinear Woelund model on the ED50 values ​​obtained from different mixture ratios of clopyralid + chloridazone (η1 = 1.7 and η2 = 3.8) indicates an antagonistic interaction between them, thus they are not mixable.

کلیدواژه‌ها [English]

  • Additive effect
  • antagonistic effect
  • Hewlett model
  • synergistic effect
  • Voelund model
 
ABBASPOOR, M., A.A. CHITBAND, M.R. MOLKARA and H. TAVAKOLI. 2013. Using isobolographic analysis for the evaluation of additive, synergism and antagonism effects in binary mixture of glyphosate and clopyralid on Acroptylon repense control. Iranian Plant Protection Research. 27: 294-300. DOI: http://doi.org/10.22067/jpp.v27i3.26731
ARMEL, G.R., P.L. RARDON, M.C. MCCOMRICK and N.M. FERRY, 2007. Differential response of several carotenoid biosynthesis inhibitors in mixtures with atrazine. Weed Technology. 21: 947-53. DOI: http://doi.org/10.1614/wt-06-133.1
ASHIGH, J. and J.C. HALL, 2010. Bases for interactions between saflufenacil and glyphosate in plants. Journal of Agricultural and Food Chemistry. 58: 7335-7343. DOI: http://doi.org/10.1021/jf100595a  
BARBIERI, G.F., B.G. YOUNG, F.E. DAYAN, J.C. STREIBIG, H.TAKANO, Jr.A. MEROTTO and L.A. AVILA, 2022. Herbicide mixtures: interactions and modeling. Advances in Weed Science. 40: e020220051. DOI: http://doi.org/ 10.51694/AdvWeedSci/2022;40:seventy-five011   
BERENBAUM, M.C., 1981. Criteria for analyzing interactions between biologically active agents. Advances in Cancer Research. 35: 269-335. DOI: http://doi.org/10.1016/S0065-230X(08)60912-4  
BESANÇON, T.E., D. PENNER and W.J. EVERMAN, 2018. Reduced translocation is associated with antagonism of glyphosate by glufosinate in giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti). Weed Science. 66: 159-167. DOI: 10.1017/wsc.2017.72
BLACKSHAW R.E. 1989. Synergistic mixes of DPX-A7881 and clopyralid in canola (Brassica napus). Weed Technology. 3: 690-695. DOI: http://doi.org/10.1017/s0890037x00033054
BUSI, R., T.A. GAINES and S. POWLES, 2017. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum. Pest Management Science. 73: 410-417. DOI: http://doi.org/10.1002/ps.4441
CHITBAND, A.A., R. GHORBANI, M.H. RASHED MOHASSEL and M. NABIZADE. 2018. Joint action of some usable important broadleaf herbicides in sugar beet. Iranian Plant Protection Research. 31: 374-387. DOI: http://doi.org/10.22067/jpp.v31i3.50875
CHITBAND, A.A., R. GHORBANI, M. NABIZADE and E. ZAIDALI, 2017. Efficacy of mixing common herbicides in control of broadleaf weeds in sugar beet (Beta vulgaris L.). Journal of Sugar Beet. 33: 91-102. DOI: http://doi.org/10.22092/jsb.2017.101878.1099
CHITBAND, A.A., V. SARABI and A. ALIVERDI, 2025. Joint action of common herbicides on the control of Alhagi pseudalhagi (Bieb.) Desv.: A comparison study. Weed Research. 65: e12679. DOI: http://doi.org/10.1111/wre.12679
DEVEIKYTE, I., L. SARUNAITE and V. SEIBUTIS, 2015. Evaluation of pre- and postemergence herbicide combinations for broadleaved weeds in sugar beet. In: PRICE, A., J. KELTON and L. SARUNAITE. Herbicides, agronomic crops and weed biology. IntechOpen. DOI: http://doi.org/10.5772/61437
FAO. 2023. Food and Agriculture Organization www.fao.org/faostat/en/#data/QC
FINCH, B., H. WRIGHT-SMITH, J. DAVIS, AND B. SCOTT, 2024. Jar Test Instructions: Assessing Pesticide-Fertilizer Compatibility (Jar Test). University of Arkansas. FSA2166R. www.uaex.uada.edu/publications/PDF/FSA-2166.pdf
HEAP I, 2025. The international herbicide-resistant weed database. www.weedscience.org 
HICKS, T.V., G.R. WEHTJE and T.L. GREY, 1998. The interaction of pyridate and 2,4-DB in peanut (Arachis hypogaea), Florida beggarweed (Desmodium tortuosum), and sicklepod (Senna obtusifolia). Weed Science. 46: 284-288. DOI: http://doi.org/10.1017/s0043174500089426  
HOLLAWAY, K.L., N.D. HALLAM and A.G. FLYNN, 1996. Synergistic joint action of MCPA ester and metsulfuron-methyl. Weed Research. 36: 369-374. DOI: http://doi.org/ 10.1111/j.1365-3180.1996.tb01666.x  
HOSSEYNI, S.M., H. NAJAFI, B. SANI and H. MOZAFARI, 2022. Investigation the effect of the application of single and mixing of propyzamide and ethofumesate herbicides in the control of dodder (Cuscuta campestris), grass and broad leaves weeds of sugar beet (Beta vulgaris L.). Journal of Crop Ecophysiology. 16: 563-580. DOI: http://doi.org/10.30495/JCEP.2023.1932247.1806 (in Persian with English summary)
JING, X., G. YAO, D. LIU, M. LIU, P. WANG and Z. ZHOU, 2016. Environmental fate of chiral herbicide fenoxaprop-ethyl in water-sediment microcosms. Scientific Reports. 6: 26797. DOI: http://doi.org/10.1038/srep26797
KELLEY, K.B., L.M. WAX, A.G. HAGER and D.E. RIECHERS, 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Science. 53: 101-112. DOI: http://doi.org/10.1614/ws-04-078r  
LE, V.V., A.V. NGUYEN, D.T. LUU, F.B. FRITSCHI, C.T. NGUYEN, T.L. HO, 2024. Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. Plant-Environment Interactions. 5: e70017. DOI: 10.1002/pei3.70017
MAJIDI, M., G. HEIDARI and Y. EMAM, 2023. Qualitative characteristics of sugar beet as affected by different broadleaf herbicides combinations. Iran Agricultural Research. 36: 1-6. DOI: http://doi.org/10.22099/iar.2017.4126 (in Persian with English summary)
MASABNI, J.G. and B.H. ZANDSTRA, 1999. Discovery of a common purslane (Portulaca oleracea) biotype resistant to linuron. Weed Technology. 13: 599-605. DOI: http://doi.org/10.1017/S0890037X00046261
OTTIS, B.V., J.D. MATTICE and R.E. TALBERT, 2005. Determination of antagonism between cyhalofop-butyl and other rice (Oryza sativa) herbicides in barnyardgrass (Echinochloa crus-galli). Journal of Agricultural and Food Chemistry. 53: 4064-068. DOI: http://doi.org/10.1021/ jf050006d
OU, J., C.R. THOMPSON, P.W. STAHLMAN, N. BLOEDOW and M. JUGULAM, 2018. Reduced translocation of glyphosate and dicamba in combination contributes to poor control of Kochia scoparia: evidence of herbicide antagonism. Scientific Reports. 8: 1-11. DOI: http://doi.org/10.1038/ s41598-018-23742-3
PARADOWSKI, A. and T. PRACZYK, 2004. Evaluation of selected mixtures of active ingredients for weed control in sugar beet. Progress in Plant Protection. 44: 1004-1007. DOI: http://doi.org/10.24425/jppr.2023.146878
RASHIDI, S., A.R. YOUSEFI, N. GOICOECHEA, M. POURYOUSEF, P. MORADI, S. VITALINI and M. IRITI, 2021. Allelopathic interactions between seeds of Portulaca oleracea L. and crop species. Applied Sciences. 11: 3539. DOI: http://doi.org/10.3390/app11083539
RITZ, C., F. BATY, J.C. STREIBIG and D. GERHARD, 2015. Dose-response analysis using R. PLoS One. 10: e0146021. DOI: http://doi.org/10.1371/journal.pone.0146021
SCHUSTER, C.L., K. AL-KHATIB and J.A. DILLE, 2007. Mechanism of antagonism of mesotrione on sulfonylurea herbicides. Weed Science. 55: 429-434. DOI: 10.1614/ws-06-217.1
SØBYE, K.W., J.C. STREIBIG, N. CEDERGREEN, 2011. Prediction of joint herbicide action by biomass and chlorophyll a fluorescence. Weed Research. 5:23-32. DOI: http://doi.org/10.1111/j.1365-3180.2010.00824.x
SOROKA, S.V. and G.J. GADZHIEVA, 2006. State of weed infestation and features of sugar beet protection in Belarus. Matica Srpska Journal for Natural Sciences. 110: 165-172. DOI: http://doi.org/10.2298/ZMSPN0610165S
TEYMOURINIA, M., A.A. CHITBAND, G. REZAEE and S. KHAYRANDISH, 2023. The joint action of glyphosate, clethodim, and imazethapyr to control cogongrass (Imperata cylinderica L. Beauv) in the margin of the irrigation canals (A case study using two different approaches). Crop Protection. 174: 106413.  DOI: http://doi.org/10.1016/j.cropro.2023.106413
WANAMARTA, G., D. PENNER and J.J. KELLS, 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Science. 37: 400-404. DOI: http://doi.org/10.1017/s004317450007212x
WILSON R.G., 1994. New herbicides for postemergence application in sugarbeet (Beta vulgaris). Weed Technology. 8: 807-811. DOI: http://doi.org/10.1017/S0890037X00028724
ZAND, E., N. NEZAMABADI, M.A. BAGHESTANI, P. SHIMI and S.K. MOUSAVI, 2019. A guide to chemical control of weeds in Iran. Jihad-e-Daneshgahi Press. Mashhad. pp. 154. (In Persian)
ABBASPOOR, M., A.A. CHITBAND, M.R. MOLKARA and H. TAVAKOLI. 2013. Using isobolographic analysis for the evaluation of additive, synergism and antagonism effects in binary mixture of glyphosate and clopyralid on Acroptylon repense control. Iranian Plant Protection Research. 27: 294-300. DOI: http://doi.org/10.22067/jpp.v27i3.26731
ARMEL, G.R., P.L. RARDON, M.C. MCCOMRICK and N.M. FERRY, 2007. Differential response of several carotenoid biosynthesis inhibitors in mixtures with atrazine. Weed Technology. 21: 947-53. DOI: http://doi.org/10.1614/wt-06-133.1
ASHIGH, J. and J.C. HALL, 2010. Bases for interactions between saflufenacil and glyphosate in plants. Journal of Agricultural and Food Chemistry. 58: 7335-7343. DOI: http://doi.org/10.1021/jf100595a  
BARBIERI, G.F., B.G. YOUNG, F.E. DAYAN, J.C. STREIBIG, H.TAKANO, Jr.A. MEROTTO and L.A. AVILA, 2022. Herbicide mixtures: interactions and modeling. Advances in Weed Science. 40: e020220051. DOI: http://doi.org/ 10.51694/AdvWeedSci/2022;40:seventy-five011   
BERENBAUM, M.C., 1981. Criteria for analyzing interactions between biologically active agents. Advances in Cancer Research. 35: 269-335. DOI: http://doi.org/10.1016/S0065-230X(08)60912-4  
BESANÇON, T.E., D. PENNER and W.J. EVERMAN, 2018. Reduced translocation is associated with antagonism of glyphosate by glufosinate in giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti). Weed Science. 66: 159-167. DOI: 10.1017/wsc.2017.72
BLACKSHAW R.E. 1989. Synergistic mixes of DPX-A7881 and clopyralid in canola (Brassica napus). Weed Technology. 3: 690-695. DOI: http://doi.org/10.1017/s0890037x00033054
BUSI, R., T.A. GAINES and S. POWLES, 2017. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum. Pest Management Science. 73: 410-417. DOI: http://doi.org/10.1002/ps.4441
CHITBAND, A.A., R. GHORBANI, M.H. RASHED MOHASSEL and M. NABIZADE. 2018. Joint action of some usable important broadleaf herbicides in sugar beet. Iranian Plant Protection Research. 31: 374-387. DOI: http://doi.org/10.22067/jpp.v31i3.50875
CHITBAND, A.A., R. GHORBANI, M. NABIZADE and E. ZAIDALI, 2017. Efficacy of mixing common herbicides in control of broadleaf weeds in sugar beet (Beta vulgaris L.). Journal of Sugar Beet. 33: 91-102. DOI: http://doi.org/10.22092/jsb.2017.101878.1099
CHITBAND, A.A., V. SARABI and A. ALIVERDI, 2025. Joint action of common herbicides on the control of Alhagi pseudalhagi (Bieb.) Desv.: A comparison study. Weed Research. 65: e12679. DOI: http://doi.org/10.1111/wre.12679
DEVEIKYTE, I., L. SARUNAITE and V. SEIBUTIS, 2015. Evaluation of pre- and postemergence herbicide combinations for broadleaved weeds in sugar beet. In: PRICE, A., J. KELTON and L. SARUNAITE. Herbicides, agronomic crops and weed biology. IntechOpen. DOI: http://doi.org/10.5772/61437
FAO. 2023. Food and Agriculture Organization www.fao.org/faostat/en/#data/QC
FINCH, B., H. WRIGHT-SMITH, J. DAVIS, AND B. SCOTT, 2024. Jar Test Instructions: Assessing Pesticide-Fertilizer Compatibility (Jar Test). University of Arkansas. FSA2166R. www.uaex.uada.edu/publications/PDF/FSA-2166.pdf
HEAP I, 2025. The international herbicide-resistant weed database. www.weedscience.org 
HICKS, T.V., G.R. WEHTJE and T.L. GREY, 1998. The interaction of pyridate and 2,4-DB in peanut (Arachis hypogaea), Florida beggarweed (Desmodium tortuosum), and sicklepod (Senna obtusifolia). Weed Science. 46: 284-288. DOI: http://doi.org/10.1017/s0043174500089426  
HOLLAWAY, K.L., N.D. HALLAM and A.G. FLYNN, 1996. Synergistic joint action of MCPA ester and metsulfuron-methyl. Weed Research. 36: 369-374. DOI: http://doi.org/ 10.1111/j.1365-3180.1996.tb01666.x  
HOSSEYNI, S.M., H. NAJAFI, B. SANI and H. MOZAFARI, 2022. Investigation the effect of the application of single and mixing of propyzamide and ethofumesate herbicides in the control of dodder (Cuscuta campestris), grass and broad leaves weeds of sugar beet (Beta vulgaris L.). Journal of Crop Ecophysiology. 16: 563-580. DOI: http://doi.org/10.30495/JCEP.2023.1932247.1806 (in Persian with English summary)
JING, X., G. YAO, D. LIU, M. LIU, P. WANG and Z. ZHOU, 2016. Environmental fate of chiral herbicide fenoxaprop-ethyl in water-sediment microcosms. Scientific Reports. 6: 26797. DOI: http://doi.org/10.1038/srep26797
KELLEY, K.B., L.M. WAX, A.G. HAGER and D.E. RIECHERS, 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Science. 53: 101-112. DOI: http://doi.org/10.1614/ws-04-078r  
LE, V.V., A.V. NGUYEN, D.T. LUU, F.B. FRITSCHI, C.T. NGUYEN, T.L. HO, 2024. Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. Plant-Environment Interactions. 5: e70017. DOI: 10.1002/pei3.70017
MAJIDI, M., G. HEIDARI and Y. EMAM, 2023. Qualitative characteristics of sugar beet as affected by different broadleaf herbicides combinations. Iran Agricultural Research. 36: 1-6. DOI: http://doi.org/10.22099/iar.2017.4126 (in Persian with English summary)
MASABNI, J.G. and B.H. ZANDSTRA, 1999. Discovery of a common purslane (Portulaca oleracea) biotype resistant to linuron. Weed Technology. 13: 599-605. DOI: http://doi.org/10.1017/S0890037X00046261
OTTIS, B.V., J.D. MATTICE and R.E. TALBERT, 2005. Determination of antagonism between cyhalofop-butyl and other rice (Oryza sativa) herbicides in barnyardgrass (Echinochloa crus-galli). Journal of Agricultural and Food Chemistry. 53: 4064-068. DOI: http://doi.org/10.1021/ jf050006d
OU, J., C.R. THOMPSON, P.W. STAHLMAN, N. BLOEDOW and M. JUGULAM, 2018. Reduced translocation of glyphosate and dicamba in combination contributes to poor control of Kochia scoparia: evidence of herbicide antagonism. Scientific Reports. 8: 1-11. DOI: http://doi.org/10.1038/ s41598-018-23742-3
PARADOWSKI, A. and T. PRACZYK, 2004. Evaluation of selected mixtures of active ingredients for weed control in sugar beet. Progress in Plant Protection. 44: 1004-1007. DOI: http://doi.org/10.24425/jppr.2023.146878
RASHIDI, S., A.R. YOUSEFI, N. GOICOECHEA, M. POURYOUSEF, P. MORADI, S. VITALINI and M. IRITI, 2021. Allelopathic interactions between seeds of Portulaca oleracea L. and crop species. Applied Sciences. 11: 3539. DOI: http://doi.org/10.3390/app11083539
RITZ, C., F. BATY, J.C. STREIBIG and D. GERHARD, 2015. Dose-response analysis using R. PLoS One. 10: e0146021. DOI: http://doi.org/10.1371/journal.pone.0146021
SCHUSTER, C.L., K. AL-KHATIB and J.A. DILLE, 2007. Mechanism of antagonism of mesotrione on sulfonylurea herbicides. Weed Science. 55: 429-434. DOI: 10.1614/ws-06-217.1
SØBYE, K.W., J.C. STREIBIG, N. CEDERGREEN, 2011. Prediction of joint herbicide action by biomass and chlorophyll a fluorescence. Weed Research. 5:23-32. DOI: http://doi.org/10.1111/j.1365-3180.2010.00824.x
SOROKA, S.V. and G.J. GADZHIEVA, 2006. State of weed infestation and features of sugar beet protection in Belarus. Matica Srpska Journal for Natural Sciences. 110: 165-172. DOI: http://doi.org/10.2298/ZMSPN0610165S
TEYMOURINIA, M., A.A. CHITBAND, G. REZAEE and S. KHAYRANDISH, 2023. The joint action of glyphosate, clethodim, and imazethapyr to control cogongrass (Imperata cylinderica L. Beauv) in the margin of the irrigation canals (A case study using two different approaches). Crop Protection. 174: 106413.  DOI: http://doi.org/10.1016/j.cropro.2023.106413
WANAMARTA, G., D. PENNER and J.J. KELLS, 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Science. 37: 400-404. DOI: http://doi.org/10.1017/s004317450007212x
WILSON R.G., 1994. New herbicides for postemergence application in sugarbeet (Beta vulgaris). Weed Technology. 8: 807-811. DOI: http://doi.org/10.1017/S0890037X00028724
ZAND, E., N. NEZAMABADI, M.A. BAGHESTANI, P. SHIMI and S.K. MOUSAVI, 2019. A guide to chemical control of weeds in Iran. Jihad-e-Daneshgahi Press. Mashhad. pp. 154. (In Persian)