با همکاری انجمن‏‌ بیماری شناسی گیاهی ایران

نوع مقاله : حشره شناسی کشاورزی

نویسندگان

1 موسسه تحقیقات واکسن و سرم سازی رازی شعبه جنوب غرب کشور

2 استادیار گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی- دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

3 گروه جانوران سمی و تولید پادزهر، موسسه تحقیقات واکسن و سرم سازی رازی شعبه جنوب غرب کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

4 گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

5 گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

به منظور ارزیابی سمیت زهر عقرب Hottentotta saulcyi علیه کرم ساقه‌خوار نیشکر (Sesamia nonagrioides)، درصد مرگ و میر لاروها، فعالیت آنزیم‌های سم‌زدایی و تغییرات هیستوپاتولوژی بافت‌های سزمیا مورد بررسی قرار گرفت. سم به لارو‌ها در پنج دوز مختلف 15/0، 35/0، 5/0، 75/0 و 1 میکروگرم (پانزده لارو به ازای هر دوز) تزریق شد و دوزهای که در طول آزمایش سبب مرگ و میر لاروها شده بودند ثبت شدند. این مطالعه نشان داد که زهر H. saulcyi قادر به ایجاد نشانه‌های ظاهری بوده که در نهایت منجر به مرگ لارو‌های مسموم شده گردید. علاوه بر این، این سم به شدت فعالیت
گلوتاتیون S-transferases (GST)  را مهار کرد. داده‌های این آزمایش نشانگر وجود رابطه بین فعالیت آنزیم GST و مرگ و میر لارو می‌باشد، به‌طوری که غیر فعال شدن این آنزیم توسط زهر عقرب ممکن است مسئول افزایش مرگ و میر لارو باشد. در این مطالعه، آسیب‌های غشای روده و لوله‌های مالپیگی با استفاده از روش‌های هیستوپاتولوژیکی بررسی شد. در اثر مسمومیت، تغییرات هیستوپاتولوژیکی واضحی در تمام لاروهای تزریقی با دوز 1 میکرولیتر سم مشاهده شد، از جمله تجزیه و بهم خوردن ساختار سلول‌های غشای روده میانی که با کاهش پیشرونده غشای پریتروفی و ناپدید شدن میکرو ویلی‌ها همراه بود.
 

کلیدواژه‌ها

عنوان مقاله [English]

Toxicity of Hottentotta saulcyi venom against Sesamia nonagrioides on sugarcane plants

نویسندگان [English]

  • fatemeh salabi 1
  • Mahmood Nazari 2
  • Hadiye Jafari 3
  • Ali Shahriari 4
  • Anahita Rezaei 5

1 Razi Vaccine and Serum Research Institute

2 Department of Animal Science, Faculty of Animal science and Food Technology, Khuzestan University of Agricultural Sciences and Natural Resources, Ahvaz, Iran

3 Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran

4 Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

5 Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

To evaluate the toxicity of Hottentotta saulcyi venom on Sesamia nonagrioides, we investigated the larval mortality, detoxification enzyme activity and histopathological alterations of the S. nonagrioides organs. Venoms were injected into the larvae at five doses (0.15µg, 0.35µg, 0.5µg, 0.75µg and 1µg; fifteen larvae per each dose) and the doses causing death were recorded during the experiment. This study demonstrated that H. saulcyi venom was able to cause external symptoms that eventually led to death of the intoxicated larvae. Moreover, this venom strongly inhibited glutathione S-transferases (GST) activity. Our data highlighted the relationship between the activity of GST enzyme and larval mortalities, so that the inactivation of this enzyme by scorpion venom may be responsible for the increasing the larval mortality. In the present study, the damage of midgut epithelium and malpighian tubules has been directly visualized and documented using histopathology methods. Clear histopathological alterations of intoxication were observed for all larvae injected with 1µg doses of venom, including a distinctive lysing and disorganizing of midgut epithelial cells that coupled with a progressive loss of the peritrophic membrane and the disappearance of microvilli.

کلیدواژه‌ها [English]

  • Keywords: Glutathione S-transferases
  • Hottentotta saulcyi
  • malpighian tubules
  • midgut
  • Sesamia nonagrioides
Abutaha, N., A. M. F. Mashaly, A. Al-Mekhlafi, M. Farooq, M. Al-shami and M. A. Wadaan, 2015. Larvicidal activity of endophytic fungal extract of cochliobolus spicifer (pleosporales: Pleosporaceae) on aedes caspius and culex pipiens (diptera: Culicidae). Applied entomology and zoology, 50: 405-414.
Akef, H., N. Kotb, D. Abo-Elmatty and S. Salem, 2017. Anti-proliferative effects of androctonus amoreuxi scorpion and cerastes cerastes snake venoms on human prostate cancer cells. Journal of Cancer Prevention, 22: 40.
Al-Mehmadi, R. M. and A. A. Al-Khalaf, 2010. Larvicidal and histological effects of melia azedarach extract on culex quinquefasciatus say larvae (diptera: Culicidae). Journal of King Saud University-Science, 22: 77-85.
Al-Quraishy, S., M. A. Dkhil and A. E. A. Moneim, 2014. Hepatotoxicity and oxidative stress induced by naja haje crude venom. Journal of Venomous Animals and Toxins including Tropical Diseases, 20: 42.  
Al Asmari, A. K., H. A. Khan, R. A. Manthiri, K. M. Al Yahya and K. E. Al Otaibi, 2014. Effects of echis pyramidum snake venom on hepatic and renal antioxidant enzymes and lipid peroxidation in rats. Journal of Biochemical and Molecular Toxicology, 28: 407-412.
Babu, S., K. M. K. Dass and S. Venkatachari, 1971. Effects of scorpion venom on some physiological processes in cockroach. Toxicon, 9: 119in5121-5120in6124.
Bancroft, J., A. Stevens and D. Turner, 1996. "Theory and practice of histological techniques 4th Ed Churchill Living Stone, New York Edinburgh." Madrid, Sanfrancisco.
Bocquené, G., Carbamates. and F.o. Galgani, 1998. Biological effects of contaminants: Cholinesterase inhibition by organophosphate and carbamate compounds: International Council for the Exploration of the Sea Copenhagen,, Denmark.
Borchani, L., M. Stankiewicz, C. Kopeyan, P. Mansuelle, R. Kharrat, S. Cestèle, H. Karoui, H. Rochat, M. Pelhate and M. El Ayeb, 1997. Purification, structure and activity of three insect toxins from Buthus occitanus tunetanus venom. Toxicon, 35: 365-382.
Boyer, L. V., A. A. Theodorou, R. A. Berg, J. Mallie, A. Chávez-Méndez, W. García-Ubbelohde, S. Hardiman and A. Alagón, 2009. Antivenom for critically ill children with neurotoxicity from scorpion stings. New England Journal of Medicine, 360: 2090-2098.
Das, S., B. Badhe, K. K. Shaha, N. Manickam and G. Manigandan, 2013. Fatal scorpion envenomation: Report of two cases. Journal of Indian Academy of Forensic Medicine, 35: 404-407.
Dhawan, R., S. Joseph, A. Sethi and A. K. Lala, 2002. Purification and characterization of a short insect toxin from the venom of the scorpion Buthus tamulus. FEBS letters, 528: 261-266.
Ellman, G. L., K. D. Courtney, V. Andres and R. M. Featherstone, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7: 88IN191-9095.
Finney, D. J. 1971. Probit Analysis, third ed. Cambridge University Press, Cambridge, UK.
Furlong, M. J. and D. J. Wright, 1994. Examination of stability of resistance and cross resistance patterns to acylurea insect growth regulators in field populations of the diamondback moth, Plutella xylostella, from malaysia. Pest Management Science, 42: 315-326.
Gurevitz, M., N. Zilberberg, O. Froy, D. Urbach, E. Zlotkin, B. D. Hammock, R. Herrmann, H. Moskowitz and N. Chejanovsky, 1997. Utilization of scorpion insecticidal neurotoxins and baculoviruses for the design of novel selective biopesticides. In Modern agriculture and the environment. Springer, Dordrecht, 81-96.
Habig, W. H., M. J. Pabst and W. B. Jakoby, 1974. Glutathione s-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249: 7130-7139.
Halabian, A. H., S. Cheraghi, S. Cheraghi and J. Pourreza, 2013. Performance evaluation of biological control of sugarcane stem borers wasp (Telenomus busseolae). World Applied Sciences Journal, 21: 1770-1775.
Heidarpour, M., E. Ennaifer, H. Ahari, N. Srairi-Abid, L. Borchani, G. Khalili, H. Amini, A. A. Anvar, S. Boubaker, M. El-Ayeb and D. Shahbazzadeh, 2012. Histopathological changes induced by hemiscorpius lepturus scorpion venom in mice. Toxicon, 59: 373-378.
Isbister, G.K., A. Graudins, J. White and D. Warrell, 2003. Antivenom treatment in arachnidism: Antivenoms. Journal of Toxicology: Clinical Toxicology, 41: 291-300.
Josephy, P. D. 2010. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Human genomics and proteomics: HGP.
Karataş, A. and A. Karataş, 2003. Mesobuthus eupeus (cl koch, 1839)(scorpiones: Buthidae) in turkey. Euscorpius, 7: 1-6.
Khan, R. A., J. Y. Liu, M. Rashid, D. Wang and Y. L. Zhang, 2013. Cantharidin impedes activity of glutathione s-transferase in the midgut of Helicoverpa armigera hübner. International journal of molecular sciences, 14: 5482-5500.
Khosravi, M., M. Mayahi, S. M. Jalali, A. Rezaie, A. T. Moghadam, Z. Hosseini, S. K. Barzegar and S. Azadmanesh, 2017. Effects of experimental mesobuthus eupeus scorpion envenomation on chicken. Archives of Razi Institute, 72: 23-31.
Lazarovici, P., P. Yanai, M. Pelhate and E. Zlotkin, 1982. Insect toxic component from the venom of a chactoid scorpion, Scorpio maurus palmatus (scorpionidae). Journal of Biological Chemistry, 257: 8397-8404.
Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall, 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
Manzoli-Palma, M., N. Gobbi, and M. Palma, 2003. Insects as biological models to assay spider and scorpion venom toxicity. Journal of Venomous Animals and Toxins including Tropical Diseases, 9: 174-185.
Mohan, M. and G. Gujar, 2003. Local variation in susceptibility of diamondback moth, Plutella xylostella (l.) to insecticides and role of detoxifying enzymes. Crop Protection, 2: 25.
Motoyama N. A. O. K. I. 1980. Glutathione s-transferases: Their role in the metabolism of organophosphorus insecticides. Reviews in Biochemical Toxicology.
Ohbayashi, H., N. T. PANDHARIPANDE, J. Mitsuhashi and K. SATO, 1997. Acetylcholinesterase activity of insect cells, in particular flesh fly cells, cultured in vitro. Applied Entomology and Zoology, 32: 227-233.
Ozkan, O., S. Adiguzel, S. Kar, M. Kurt, S. Yakistiran, Y. Cesaretli, M. Orman, and Z. Karaer, 2007. Effects of androctonus crassicauda (olivier, 1807)(scorpiones: Buthidae) venom on rats: Correlation among acetylcholinesterase activities and electrolytes levels. Journal of Venomous Animals and Toxins including Tropical Diseases, 13: 69-81.
Ozkan, O. and A. Filazi, 2004. The determination of acute lethal dose-50 (ld50) levels of venom in mice, obtained by different methods from scorpions, Androctonus crassicauda (oliver 1807). Acta Parasitol. Turcica, 28: 50-53.
Pipelzadeh, M. H., A. R. Dezfulian, M. T. Jalali and A. K. Mansouri, 2006. In vitro and in vivo studies on some toxic effects of the venom from Hemiscorpious lepturus scorpion. Toxicon, 48: 93-103.
Smitha, S. and A. V. B. Rao, 2012. Histopathological changes in malpighian tubules of silkworm exposed to selenium. Am-Euras Journal of Toxicological Science, 4: 98-102.
Soderlund, D. M., C. W. Hessney and D. W. Helmuth, 1983. Pharmacokinetics of cis-and trans-substituted pyrethroids in the american cockroach. Pesticide Biochemistry and Physiology, 20: 161-168.
Ucar, G. and C. Tas, 2003. Cholinesterase inhibitory activities of the scorpion Mesobuthus gibbosus (buthidae) venom peptides. FABAD Journal Pharm Science, 28: 61-70.
Van der Valk, T. and A. van der Meijden, 2014. Toxicity of scorpion venom in chick embryo and mealworm assay depending on the use of the soluble fraction versus the whole venom. Toxicon, 88: 38-43.
Yu, K. X., C. L. Wong, R. Ahmad and I. Jantan 2015. Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 8: 1006-1012.
Zacharia, J.T., 2011. Ecological Effects of Pesticides, Pesticides in the Modern World-Risks and Benefits, Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-458-0. Tech, Available from: http://www. intechopen. com/books/pesticides-in-the-modern-world-risks-and-benefits/ecological-effects-of pesticides.