با همکاری انجمن‏‌ بیماری شناسی گیاهی ایران

نویسندگان

استاد موسسه تحقیقات گیاهپزشکی

چکیده

افزایش کارایی مصرف منابع توسط گیاهان زراعی خسارت ناشی از رقابت علف‌های‌هرز را کاهش خواهد داد. تأثیر تراکم و آرایش کاشت ذرت دانه‌ای (L.Zea mays) بر کارایی مصرف نور ذرت و سلمه‌تره در سطوح مختلف تراکم سلمه‌تره در یک آزمایش فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال 1383 مورد بررسی قرار گرفت. عامل اول یعنی تراکم کاشت ذرت شامل 70 و 105 هزار بوته در هکتار، عامل دوم آرایش کاشت ذرت شامل کشت بصورت یک ردیف و دو ردیف روی پشته و عامل سوم تراکم‌های علف‌هرز سلمه‌تره در چهار سطح 0، 5، 10 و 15 بوته در متر طولی ردیف بود. نتایج نشان داد که کارایی مصرف نور ذرت در شرایط حضور سلمه‌تره در تراکم‌ها و آرایش‌های کاشت مختلف ذرت کاهش یافت. تراکم بیشتر ذرت باعث افزایش کارایی مصرف نور ذرت و سلمه‌تره نسبت به تراکم کمتر آن شد. آرایش کاشت دو ردیفه ذرت نیز باعث افزایش کارایی مصرف نور ذرت و کاهش کارایی مصرف نور سلمه‌تره در مقایسه با آرایش کاشت تک ردیفه آن شد. البته تأثیر آرایش کاشت بر کارایی مصرف نور ذرت و سلمه‌تره به اندازه تأثیر تراکم نبود.
 

کلیدواژه‌ها

عنوان مقاله [English]

Study of corn and common lambsquarters (Chenopodium album) radiation use efficiency under competition condition

نویسندگان [English]

  • Farhad Saber Ali
  • A. Hejazi
  • S.A. Sadatnoori
  • E. Zand
  • M. A. Baghestani

چکیده [English]

Increasing the resource use efficiency in crop will be decreased weed competition. In this study the effects of corn plant density and planting pattern on radiation use efficiency of corn and common lambsquarters studied in a randomized complete block design with three replications and factorial treatment arrangement at AborayhanPardis in 2003. Plant density treatment was at two levels: recommended (70/000 plant ha-1) and 1.5 times recommended plant density (105/000 plant ha-1). Planting pattern treatment was at two levels: one and two rows planting (planting on both of ridge sides) and fourcommon lambesquarters density levels: 0, 5, 10 and 15 plant m-1. The results showed that corn radiation use efficiency decreased in presence of common lambesquarters in different corn plant densities and planting patterns. Higher corn density increased corn and common lambesquarters radiation use efficiencies compared to less corn density. Corn two rows planting pattern compared to one row planting pattern, increased corn radiation use efficiency and decreased common lambesquarters radiation use efficiency.
 

کلیدواژه‌ها [English]

  • Planting pattern
  • Density
  • Competition
  • Radiation use efficiency and dry matter
BALL, R. A., R.MENEW, D. T.E.VORIES, C.KESLING and L.C.PURCELL, 2001. Path analyses for population density effects on short-season soybean yield. Agron.
J. 93: 187-195.
BARTELINK, H.H., K. KRAMER and G.M.J.MOHREN, 1997. Applicability of the radiation use efficiency concept for simulating growth of forest stands. Agric.Forest. Meteorol. 88: 169-179.
BALLARE, C.L., A.L.SCOPEL and R.A.SANCHEZ, 1990. Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247: 329-332.
BALLARE, C.L. and J. J. CASAL, 2000. Light signals perceived by crop and weed plants. Field Crop Research. 67: 149-160.
BERKOWITZ, A. R. 1988. Competition for resource in weed-crop mixtures. In: Altieri, M.A. and Liebman, M. (eds) Weed Management in Agroecosystems: Ecological Approaches. CRC Press Inc., Boca Raton, Florida, PP. 89-119.
BISCO, P.V. and J.N.GALLAGHER, 1977. Weather, dry matter production and yield. In: Landsberg, J.J., Cutting, C. V. (Eds), Environmental Effects on Crop Physiology. Academic Press, London, PP. 75-100.
BURNELL, J.N. and M. D. HATCH, 1985. Light-dark modulation of leaf pyruvate, Pi diknase. TrendesBiochem. Sci. 10: 288-291.
CONNELL, M.G., G.J.OLEARY, D. M.WHITFIELD and D. J. CONNOR, 2004. Interception of photosynthetically active radiation and radiation use efficiency of wheat, field pea and mustard in a smi- arid environment. Field Crops Res. 85: 111-124.
DEWITE, C. T. 1959. Potential photosynthesis of crop surfaces. Netherlands J. Agric. Sci.7: 141-149.
FRANCIS, C.A., S.R.C.TEMPEL, A.FLOR and C.O.GROGAN, 1978. Effects of competition on yield and dry matter distribution in maize. Field Crops Res. 1: 51-60.
GALLAGHER, J.N. and P.V.BISCOE, 1978. Radiation absorption, growth and yield of cereals. Journal of Agric.Sci, Cambridge. 91: 47-60.
GARCIA, R., E. T. KANEMASU, B. L. BLAD, A. J. BAUER, L. D. HATFIELD, J. MAJOR and K. G. HUBBARD, 1988. Interception and use efficiency of light in winter wheat under different nitrogen regimes. Agric.Forest Meteorol. 44: 175-186.
GLAZER, A.N. and A. MEILES, 1987. Photochemical reaction centers: structure, organization and function. Annu. Rev. PlantPhysiol. 38: 11-45.
GOSSE, G., C. R. VARLET-GRANCHER, M.BONHOMME, J. CHARTIER, M.ALLIRAND and G.LEMAIRE, 1986. Maximum dry matter production and solar radiation intercepted by a canopy. Agronomie. 6: 47-56.
GUNSOLUS, G. L. 1990. Mechanical and cultural weed control in corn and soybean (Glycin max). Amer.J. AH. Argic. 5: 114-119.
HAMMER, G.L. and G.C.WRIGHT, 1994. A theoretical analysis of nitrogen and radiation effects on radiation use efficiency in peanut. Australian Journal of Agric.Res. 45: 575-589.
HEALEY, K.D. and K.G.RICKERT, 1998. Shading material changes the proportion of difuse radiation in transmitted radiation. Aust.J. Exp. Agric. 38 (1): 95-100.
JENNINGS, P.R. and R.C.AQUINO, 1967. Studies on competition in rice. III. The mechanism of competition among phenotypes. Evolution. 22: 529-542.
KASPERBAUER, M.J. and D. L.KARLEN, 1994. Plant spacing and reflected far-red light effects on phytochrome-regulated photosynthate allocation in corn seedlings. Crop Sci. 34: 1564-1569.
KEATING, B.A. and P.S.CARBERRY, 1993. Resource capture and use in intercropping: solar radiation. Field Crops Res. 34: 273-301.
KOCHEKI, A., H.Z.KETABI and A. NAKH-FROSH, 2001. Weed management in agroecosystems. MashadFerdowsiUniversity Publication.456 PP. (in Persian).
KROPFF, M.J. and C. J. T. SPITTERS, 1992. An eco-physiological, model for interspecific competition, applied to the influence of Chenopodium album L. on suger beet. I. model distribution and parameterization. Weed Res. 32: 437-450.
LIZASO, J.I., W.D.BATCHELOR, M.E.WESTGATE and L.ECHARTE, 2003. Enhancing the ability of Ceres-Maize to compute light capture. Agricultural Systems. 76: 293-311.
LOOMIS, R.S., W.A.WILLIAMS, W.G.DUNCAN and A.N.DOVRATF, 1968. Quantitative descriptions of foliage display and light absorption in field communities of corn plants. Crop Sci. 8: 352-356.
MADDONNI, G.A., M.E.OTEGUI and A.G.CIRILO, 2001. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res. 71: 183-193.
MARSHALL, B. and R.W.WILLEY, 1983. Radiation interaction and growth in an intercrop of pearl millet/groundnut. Field Crops Res. 7: 141-147.
MORGAN, D. C. and H. SMITH, 1981. Non-photosynthetic responses to light quality. In: Langa, D. L, Nobel, P.S., Osmond, C.B. and Ziegler, H. (eds) Encyclopedia of Plant physiology volum 12A, physiological plant ecology I, Springer Verlag, Berlin, Heidelberg, New York, PP. 109-134.
MUCHOW, R.C. and R. DAVIS, 1988. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment. II. Radiation interception and biomass accumulation. Field Crops Res. 18: 17-30.
MUCHOW, R.C. and T.R.SINCLAIR, 1994. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci. 34:721-727.
ONG, C.K. and J. L. MONTEITH, 1985. Response of pearl millet to light and temperature. Field Crops Res. 11: 141-160.
PEARCY, R.W., N.TUMOSA and K. WILLIAMS, 1981. Relationship between growth, photosynthesis and competitive interactions for C3 and a C4 plants. Oecologia. 48: 371-379.
RAJCAN, I. and C.J.SWANTON, 2001. Understanding maize-weed competition: resource competition, light quality and the whole plant. Field Crops Res. 71: 139-150.
REDDY, M.S. and R.W.WILLEY, 1981. Growth and resource use studies in an intercrop of pearl millet/groundnut. Field Crops Res.4: 14-18.
REGNIER, E.E., M.E.SALVUCCI and E. W. STOLLER, 1988. Photosynthesis and growth response to irradiance in soybean (glycine max L.) and three broadleaf weeds. Weed Sci. 36: 487-496.
SINCLAIR, T.R., J.M.BENNETAND and K.J.BOOTE, 1993. Leaf nitrogen content, photosynthesis and radiation use efficiency in peanut. Peanut Sci. 20: 40-43.
SINCLAIR, T.R., T.SHIRAIWA and G. L. HAMMER, 1992. Variation in crop radiation use efficiency in response to increased proportion of diffuse radiation. Crop Sci. 32: 1281-1284.
SPITTTERS, C. J. T., M.J.KROPFF and W. D. GROOT, 1989. Competition between maize and Echinochola crus-galli analyzed by a hyperbolic regression model. Annals of  Applied Biology. 115: 541-551.
SPITTERS, C. J. T. 1986. Separating the diffuse and directed component of global radiation and its implications for modeling canopy photosynthesis. Part II. Calculation of canopy photosynthesis. Agric.Forest. Meteorol. 38: 231-242.
SQUIRE, G.R., B. MARSHALL, A.C.TERRY and J. L. MONTEITH, 1984. Response to temperature in a stand of pearl millet. VI. Light interception and dry matter production. Journal of Experimental Botany. 153: 599-610.
STIRILING, C. M., J.H.WILLIAMS, C.R.BLACK, C.K.ONG, 1990. The effects of timing of shade on development: Dry matter production and light-use efficiency in groundnut (Arachis hypogea L.) under field conditions. Aust.J.Agric.Res. 41: 633-644.
STOCKLE, C.O. and J.R.KINIRY, 1990. Variability in crop radiation-use efficiency associated with vapor-pressure deficit. Field Crops Res. 25: 171-181.
STOLLER, E.W. and R.A.MYERS, 1989. Response of soybean (Glycin max L.) and four broadleaf weeds to reduced irradiance. Weed Sci. 37: 770-774
TOLLENAAR, M. and T. W. BRUULSEMA, 1988. Radiation use efficiency of an old and a new maize hybrid. Agron. J. 84: 536-541.
TOLLENAAR, M. and A.AGUILERA, 1992. Radiation use efficiency of an old and a new maize hybrid. Agron. J. 84: 536-541.
TOLLENAAR, M., A.A.DIBO, A.S.AGUILERA, F.C.WEISE and J.SWANTON, 1994. Effect of crop density on weed interference in maize. Agron. J. 86: 591-595.
TOLLENAAR, A., S.AGUILERA and P.NISSANKA, 1997. Grain yield is reduced more by weed interference in an old than in a new maize hybrid. Agron. J. 89: 239-246.
TRENBATH, B. R. 1979. Light use efficiency of crops and the potential for improvement through intercropping, in proc. Int. Workshop Intercropping. 10-13 January, Patancheru, India.
TSUBO, M., S. WALKER and E.MUKHALA, 2001. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Res. 71: 17-29.
TSUBO, M. and S. WALKER, 2002. A model of radiation interception and use by a maize-bean intercrop canopy. Agric.Forest. Meteorol. 110: 203-215.
TSUBO, M., S. H. WALKER and O.OGINDO, 2005. A simulation model of cereal-legume intercropping systems for semi-arid regions. I. Model development. Field Crops Res. 93: 10-22.
VALIZADEH, M. and M. MOGHADAM, 2002. Experimental Design in Agriculture. Parivar Publication. 425 PP. (in Persian).
WEINER, J., H.W.GRIEPENTORG and L.KRISTENSEN, 2001. Suppression of weed by spring wheat (Triticum aestivum) increases with crop density and spatial uniformity. Journal of Applied Ecology, 38: 784-790.
WILLIAMS, W.A., R.S.LOOMIS and C.RLEPLEY, 1965. Vegetative growth of corn as affected by population density. I. Productivity in relation to interception of solar radiation. Crop Sci. 5:211-219.
WILSON, D. R. and P.D.JAMIESON, 1985. Models of growth and water use of wheat in New Zealand. In: Day, W., Atkin, R.K. (Eds), Wheat Growth and Modeling. Plenum Press, London, pp. 211-216.
WRIGHT, G.C., M.J.BELL and G. L. HAMMER, 1993. Leaf nitrogen content and minimum temperature interactions affect radiation use efficiency in peanut. Crop Sci. 33: 476-481.
YOUNG, F.L., D. L.WYSE and R.J.JONES, 1984. Quackgrass (Agropyron repens) interference on corn (Zea mays). Weed Sci. 32: 226-234.
ZANDA., H. RAHIMIAN-MASHHADI, A. KOCHEKI, J. S. KHALGHANI, K. MOSAVI and K. RAMEZANI, 2003. Weed Ecology: Implications for management. Jehad Daneshgahi of MashadUniversity Publication. 554 PP. (In Persian).