تأثیر قارچ ریشه‌های آربوسکولار، Trichoderma harzianum و ترکیب آن‌ها بر پوسیدگی فیتوفتورایی ریشه نهال‌های پسته رقم ممتاز: ویژگی‌های رشدی، تغذیه‌ای و بیوشیمیایی

نوع مقاله : مدیریت آفات و بیماری‌های گیاهی

نویسندگان

1 گروه گیا‌ه‌پزشکی دانشگاه زابل

2 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه زابل

3 پژوهشکده پسته، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رفسنجان، ایران

4 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه زابل

5 دانشیارگروه گیاهپزشکی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

استفاده از عوامل مهار زیستی یکی از روش­های کاهش پوسیدگی فیتوفتورایی ریشه درختان پسته می‌باشد. در تحقیق حاضر تأثیر مایه‌زنی مخلوط سه گونه قارچ ­ریشه آربوسکولار (AM)، Trichoderma harzianum (Th) و ترکیب آن‌ها (AM+Th) بر پوسیدگی فیتوفتورایی ریشه ناشی از Phytophthora drechsleri (Pd) در نهال­ های پسته رقم ممتاز ارزیابی شد. قارچ­ ریشه­ های آربوسکولار، Th و ترکیب آن‌ها هم زمان با کاشت بذرهای پسته مایه‌زنی شد و بیمارگر دوماه بعد، یتایج نشان داد که درتیمارهای AM، Th، AM+Th و برهمکنش آن‌ها با Pd، ویژگی‌های رشدی، تغذیه‌ای و بیوشیمیایی به‌طور معنی­داری در مقایسه با شاهد و بیمارگر افزایش یافته که بیشترین میزان افزایش در تیمارهای AM+Th و AM+Th+Pd مشاهده شد. در انتهای آزمایش، مرگ و میر نهال­ ها از 92 درصد در تیمار Pd، به ‌67، 67 و 50 درصد در تیمارهای AM+Pd، Th+Pd و AM+Th+Pd رسید. نتایج تحقیقات حاضر نشان داد که مایه‌زنی قارچ­ ریشه­ های آربوسکولار و Th و به­خصوص ترکیب آن‌ها می­تواند علاوه بر بهبود خصوصیات رشدی، تغذیه‌ای و بیوشیمیایی، موجب مهار زیستی پوسیدگی فیتوفتورایی ریشه در نهال­های پسته شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of arbuscular mycorrhizas, Trichoderma harzianum and their combination on Phytophthora root rot of pistachio seedlings cv. Momtaz: growth, nutritional and biochemical characteristics

نویسندگان [English]

  • fatemeh shamsaddensaeed 1
  • Naser Radman 2
  • Amir Hossein Mohammadi 3
  • Mehdi Pirnia 4
  • Abdol Hossein Taheri 5
1 Department of Plant Protection, University of Zabol
2 Department of Plant Protection, University of Zabol
3 Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran
4 Department of Plant Protection, University of Zabol
5 - Associate Professor, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Using biocontrol agents is one of the methods to reduce mortality of Phytophthora root rot in pistachio orchards. In the present study, the effect of arbuscular mycorrhizal fungi (AM) (mixture of three species), Trichoderma harzianum (Th) and their combination (AM+Th) were evaluated on Phytophthora root rot caused by Phytophthora drechsleri (Pd) in pistachio seedlings cv. Momtaz. Arbuscular mycorrhizal fungi, Th and their combination were inoculated at the time of sowing pistachio seeds, but the pathogen was inoculated two months later. The results showed that AM, Th and AM+Th treatments and their interaction with Pd significantly increased growth, nutritional and biochemical characteristics of seedlings compared to the control and Pd treatment. The highest increase was observed in AM+Th and AM+Th+Pd treatments. At the end of the experiment, the mortality of pistachio seedlings was significantly reduced from 92% in Pd treatment and reached to 67, 67 and 50% in AM+Pd, Th+Pd and AM+Th+Pd treatments, respectively. It is concluded that inoculation of AM, Th and especially their combination improved the growth, nutritional and biochemical characteristics which can lead to biological control of Phytophthora root rot of pistachio seedlings.
 

کلیدواژه‌ها [English]

  • biological control
  • mineral elements
  • Proline
  • resistance
  • Soluble sugars
  • Phytophthora drechsleri
AK, B.E., I. ACAR, E. SAKAR, and S. GURSOZ, 2016. The importance of Pistacia species for pistachio production in Turkey. International Society for Horticultural Science, 1139: 183-188.
ALAMRI, S., M. HASHEM, and Y.S. MOSTAFA, 2012. In vitro and in vivo biocontrol of soil-borne phytopathogenic fungi by certain bioagents and their possible mode of action. Biocontrol Science, 17(4): 155-167.
AMARAL, J., G. PINTO, J.A. FLORES-PACHECO, J.J. DÝEZ-CASERO, A. CERQUEIRA, P. MONTEIRO, A. ALVES, and J.MARTIN-GARCIA, 2019. Effect of Trichoderma viride pre-inoculation in pine species with different levels of susceptibility to Fusarium circinatum: physiological and hormonal responses. Plant Pathology, 68(9): 1645-1653.
AZARMI, R., B. HAJIEGHRARI, and A. GIGLOU, 2011. Effect of Trichoderma on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10(31): 5850-5855.
BANIHASHEMI Z. and J. FATEHI, 1989. Reaction of cucurbit cultivars to Phytophthora drechsleri and P. capsici in greenhouse. Proceeding of 9th Iranian
Plant Protection Congress, 9-14September 1989, Ferdosi University,Mashhad, Iran, 89 (abstract).
BANIHASHEMI, Z. 2004. A method of monitor the activity of Phytophthora spp. in the root zone of Pistacia spp. Phytopathologia Mediterranea, 43: 411-414.
BANIHASHEMI, Z. and K. GHEISI, K. 1995. Comparison of rootstocks of domestic and wild pistachio cultivars to Phytophthora species. Proceeding of 12th Iranian Plant Protection Congress, Karaj. P.226.
BANIHASHEMI, Z., and M. MORADI, 2004. The frequency of isolation of Phytophthora spp. from crown and root of pistachio nut tree and reaction of the crown and root to the causal agent. Iranian Journal of Plant Pathology, 40: 57-55.
BATES, L.S., R.P.WALDREN, and I.D. TEARE, 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205–207.
BEHMANESH, Z., H. ALAEI, A.H. MOHAMMADI, and H. DASHTI, 2019. Effect of arbuscular mycorrhizas Glomus intraradices and Glomus mosseae on pistachio root rot caused by Phytophthora under salinity stress. Iranian Journal of Plant Protection Science, 50(2): 197-212. (In Persian with English summery)
BEHROOZ, A., K. VAHDATI, F. REJALI, M. LOTFI, S. SARIKHANI, and C. LESLIE, 2019. Arbuscular mycorrhiza and plant growth-promoting acteria alleviate drought stress in walnut. HortScience, 54(6); 1087-1092.
BRADSTRET, R.B.,1954, .kjeldahl method for organic nitrogen. Analytical Chemistry 26(1): 185-187.
CASTILLO, A.G., G. PUIG CECIRLY, C. JOSEPH, and
R. CUMAGUN, 2019. Non-Synergistic Effect of Trichoderma harzianum and Glomus spp. in Reducing Infection of Fusarium Wilt in Banana. Pathogens, 8: 43
DELKHAH, Z. and K. BEHBOUDI, 2021. Improvement of biocontrol efficacy of Trichoderma harzianum Tr6 vs. Phytophthora drechsleri, the causal agent of damping-off disease in Cucumis sativus. Journal of Crop Protection, 10(2): 411-423.
EL-SHARKAWY, H.H., M.S. ABBAS, A.S. SOLIMAN, S.A. IBRAHIM, and I.A. EL-NADY, 2021. Synergistic effect of growth-promoting microorganisms on biocontrol of Fusarium oxysporum f.sp. pisi, growth, yield, physiological and anatomical characteristics of pea plants. Pesticide Biochemistry and Physiology, 104939.
ESMAILPOUR, A., Y. EMAMI, M. BASIRAT; A. TAJABADIPOUR, J. HOSSINIFARD, M. HAGHDEL, H. HOKMABADI, A. SHAKER ARDEKANI, R. SEDAGHAT, N. SEDAGHATI, H. ALAVI, A.H. MOHAMMADI, and H. HASHEMI RAD, 2020. Pistachio of Iran. Agricultural Education and Extension Press, 424p.
FANI, R., M. MORADI GHAHDERIJANI, M. ALIPOUR MOGHADDAM, S. SHERAFATI, M. MOHAMMADI MOGHADDAM, E. SEDAGHATI, and P. KHODAYGAN, 2013. Efficacy of Native Strains of Trichoderma harzianum in Biocontrol of Pistachio Gummosis. Iranian Journal of Plant Protection Science, 44 (2): 243-252.
FATTAHI, M., A. MOHAMMADKHANI, B. SHIRAN, B. BANINASAB, R. RAVASH, and Y.GOGORCENA, 2021. Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp.) rootstocks submitted to drought and salinity stress. Scientia Horticulturae, 281. https://doi.org/10.1016/j.scienta.2021.109937.
GIOVANNETTI, M. and B. MOSSE, 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3): 489–500.
GROTE, D., R. SCHMIDT, and W.CLAUSSEN, 2006. Water uptake and proline index as indicators of predisposition in tomato plants to Phytophthora nicotianae infection as influenced by abiotic stresses. Physiological and Molecular Plant Pathology, 69(4-6): 121-130.
HAJEBRAHIMI, S. and Z. BANIHASHEMI, 2011. Host range of Phytophthora parsiana: a new high temperature pathogen of woody plants. Phytopathologia Mediterranea, 50: 159−165.
HARMAN, G. E., F. DONI, R. B. KHADKA, and N. UPHOFF, 2019. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, 130(2): 529-546.
HUANG, X.Q., L.H. CHEN, W. RAN, Q.R. SHEN, and X.M. YANG, 2011. Trichoderma sp. Strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping off disease in cucumber seedlings mainly by the mycoparasitism. Applied Microbiology and Biotechnology, 91: 741–755.
IRIGOYEN J.J., D.W. EMERICH, and M. SANCHEZ- DIAZ,1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Journal of Plant Physiology, 84: 55-60.
JAMALI, S., N. PANJEHKEH, and A. H. MOHAMMADI, 2016. Inhibition of Trichoderma species from growth and zoospore production of Phytophthora drechsleri and their effects on hydrolytic enzymes. Journal of Nuts, 7(02): 137-148.
KALRA, Y.P. and D.G. MAYNARD. 1991. Methods Manual for Forest Soil and Plant Analysis, Northern Forestry Centre, Edmonton.125pp.
KORMANIK, P.P. and A.C. MCGRAW, 1982. Quantification of vesicular–arbuscular mycorrhizae in plant roots. In Methods andprinciples of mycorrhizal research. Edited by N.C. Schenck. The American Phytopathological Society, St. Paul, Minnesota. pp. 37–45.
LICHTENTHALER, H.K. 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148: 350-382.
MARTÍNEZ-MEDINA, A., A. ROLDÁ, A. ALBACETE and J.A. PASCUAL, 2011. The Interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry, 72: 223-229.
MASSON, P., T. DALIX, and S. BUSSIERE, 2010. Determination of major and trace elements in plant samples by inductively coupled plasma-mass spectrometry. Communications in Soil Science and Plant Analysis, 41: 231-243.
METWALLY, R.A., 2020. Arbuscular mycorrhizal fungi and Trichoderma viride cooperative effect on biochemical, mineral content, and protein pattern of onion plants. Journal of Basic Microbiology, 1–10.
MIRABOLFATHY, M., D. E. COOKE, J. M. DUNCAN, N. A. WILLIAMS, D. ERSHAD, and A. ALIZADEH, 2001. Phytophthora pistaciae sp. nov. and P. melonis: the principal causes of pistachio gummosis in Iran. Mycological Research, 105: 1166-1175.
MIRKHANI, F., H. ALAEI, A.H. MOHAMMADI, and M. HAGHDEL, 2016. Identification of dominant Trichoderma species in pistachio orchards of Kerman province. Journal of Plant Protection, 30 (1): 82-92. (In Persian)
MOHAMMADI, A.H. and Z. BANIHASHEMI, 2010a. Effect of two isolates of Glomus mosseae from saline and non-saline soil and NaCl level on the growth, biochemical incides and mineral composition of three pistachio rootstocks. 1. Growth and biochemical characteristics. Iranian Journal of Plant Pathology 46(1): 51-69. (In Persian with English summary)
MOHAMMADI, A.H. and Z. BANIHASHEMI, 2010b. Effect of VAM colonization in pistachio rootstocks on Growth, nutrition and Phytophthora root rot. Phytopathology, 100:S85.
MORADI, M., A.H. MOHAMMADI, M. HAGHDEL, 2017. Efficiency of Elite fungicide for control of pistachio gummosis. Journal of Nuts, 8(01): 11-20.
MOSTOWFIZADEH-GHALAMFARSA, R., D.COOKE and Z.BANIHASHEMI. 2008. Phytophthora parsiana sp. nov., new high-temperature tolerant species. Mycological Research, 112: 783-794.
MOSTOWFIZADEH-GHALAMFARSA, R., D.E.L. COOKE and Z. BANIHASHEMI, 2007. Development of specific PCR primers based on ribosomal and mitochondrial genome for identification of Phytophthora drechsleri Tucker. Asian Mycology Congress (Parkroyal Penang, Malaysia), p: 199.
MOSTOWFIZADEH-GHALAMFARSA, R., F. PANABIÈRES, Z. BANIHASHEMI and D.E.L. COOKE. 2010. Phylogenetic relationship of Phytophthora cryptogea Pethybr. & Laff and P. drechsleri Tucker. Fungal Biology, 114(4): 325-339.
NASIR HUSSEIN, A., S. ABBASI, R. SHARIFI, and S. JAMALI, 2018. The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. Journal of Crop Protection, 7(1): 73-85.
NORRIS, J. R., D. READ, and A.K. VARMA, 1994. Techniques for mycorrhizal research methods in microbiology. Academic Press Inc., San Diego, pp:928.
POVEDA, J. and P. BAPTISTA, 2021. Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: mycorrhizal and endophytic fungi. Crop Protection, 105672. https://doi.org/10.1016/j.cropro.2021.105672
RAJESWARI, P., 2015. Control of Fusarium oxysporum causing Fusarium wilt by Trichoderma spp. and Pseudomonas fluorescens on Arachis hypogaea L. International Journal of Advanced Biotechnology Research, 6: 57 –65.
RUANO ROSA, D., and C. LOPEZ HERRERA, 2009. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51(1): 66-71.
SÁNCHEZ, A.D., M.J. OUSSET, and M.C. SOSA, 2019. Biological control of Phytophthora collar rot of pear using regional Trichoderma strains with multiple mechanisms. Biological Control, 135: 124-134.
SHARMA, N., K. YADAV and A. AGGARWAL, 2016, Synergistic effect of arbuscular mycorrhizae and Trichoderma sp. on growth, nutrient uptake and yield of Phaseolus mungo L. cultivars.  Journal of Trop Plant Physiology, 8: 23-31
SRIVASTAVA, M., V. KUMAR, M. SHAHID, S. PANDEY, and A. SINGH, 2016. Trichoderma-a potential and effective bio fungicide and alternative source against notable phytopathogens: A review. African Journal of Agricultural Research, 11: 310–316
SUKHADA, M., R. MANJULA, and R.D. RAWAL, 2011. Evaluation of arbuscular mycorrhiza and other biocontrol agents against Phytophthora parasitica var. nicotianae infecting papaya (Carica papaya cv. surya) and enumeration of pathogen population using immune techniques. Biological Control, 58: 22-29.
TIAN, L., Y.N. ZOU, Q.S. WU, and K. KUČA, 2021. Mycorrhiza-induced defence responses in trifoliate orange infected by Phytophthora parasitica. Acta Physiologia Plantarum, 43(3): 1-8.
VINALE, F., K. SIVASITHAMPARAM, E .L. GHISALBERTI, R. MARRA, S. L. WOO, and M. LORITO, 2008. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry Journal, 40: 1–10.
VOS, C.M., Y. YANG, B. DE CININCK, B.P.A. CAMMUE, 2014. Fungal (-like) biocontrol organisms in tomato disease control. Biological Control, 74:65–81.
WANG, S., C.WAN, Y.WANG, H. CHEN, Z. ZHOU, H. FU, and E. SOSEBEE, 2004. The characteristics of Na+, K+ and free proline distribution in several drought- resistant plants of the Alxa Desert. China. Journal of Arid Environments, 56: 525–539.
YU, C., and X. LUO, 2020. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biological Control, 150: 104352.
YUAN, S., L. MEIYUN, F. ZHIYING, L. YAN, S. WEN , P. BING, W. KAI, S.H. JUNXIONG, S.H. BIAO and S.H.QIRONG, 2016. Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biological Control, 92:164–171.
ZHENG, H.Z., KIM, Y.W., LEE, H.J., PARK, R.D., JUNG, W.J., KIM, Y.C., LEE,S.H., KIM,T.H and KIM, K.Y. 2004. Quantitative changes of PR proteins and antioxidative enzymes in response to Glomus intraradices and Phytophthora capsici in pepper (Capsicum annuum L.) plants. Journal of Microbiology and Biotechnology, 14(3), 553-562.